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  Abstract 

In an agricultural-based country like India, farming and farming activities play a vital 
role in the growth of the economy as it is the main source of GNI (Gross National In-
come). This dependence of GNI on agriculture makes it important to address the issues 
faced by the farmers. The main area of concern for farmers revolves around crops and 
livestock. Precise farming techniques like cattle counting and crop disease detection 
are the need of the hour. The introduction of computer vision and deep learning has 
enabled us to make improvements in farming techniques. To accomplish this, a com-
puter vision-based system is proposed which will be implemented using ResNet and 
YOLOv3-tiny. The proposed system will take images and videos as input and run them 
on the inference. The output will be updated in the database and the farmer will be 
notified in case of any inconsistency. The detailed report can be accessed by govern-
ment agencies. The system will increase efficiency in farming processes like crop mon-
itoring, livestock tracking, crop disease detection by providing fast and efficient solu-
tions for the problems faced by the farmers. 
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1. Introduction 

Our civilization started with agriculture, and it continues to play a significant role in providing humans with basic necessities 

like food, fodder, and raw materials. Agriculture has been instrumental in sustaining and driving the country's economy as it 

provides employment opportunities and helps in rural development. Especially in an agricultural-driven country like India, 

farming is the backbone of India's economic system, where about 60% of the population depend directly on farming as a live-

lihood. This dependence of national income on cultivation necessitates addressing the problems faced by the farmers. Issues 

such as an increase in food prices, malicious activity on the farm, and no significant development in crop production have 

come to light.  
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  The two principal problems that demand urgent attention are crop disease detection and cattle monitoring. Diseased 

crops can drastically reduce the quality and quantity of crops. If this continues on a larger scale, it could lead to scarcity of 

food. Therefore, it becomes vital to identify unhealthy plants at the initial stages to save the yield from ruining. At present, 

the crops are manually checked periodically for the presence of diseases. This task is time-consuming and can prove ineffi-

cient if not done properly. The aim is to automate the process of crop disease detection. The objective is to reduce manual 

labour by leveraging computer vision and deep learning technologies in farming activities. Hence, we propose a Resnet based 

architecture to detect and identify some common crop diseases with near-perfect accuracy [1][2]. 

  Furthermore, considering that there has been an increase in the illegal theft or killing of animals, the farmers need to know 

the number of cattle grazing in their field. By keeping an accurate count of the cattle helps the farmer to know whether their 

cattle are within the boundaries of the farm or not. The counting of individual animals manually over acres of farmlands is 

difficult and prone to human errors. The proposed system uses the YOLOv3-tiny model, which will help farmers monitor their 

livestock and keep track of the number of cattle on their farms [13-22]. There will be a notable enhancement in farm produc-

tivity and improvement in the overall efficiency of agricultural practices by catering to these problems. 

2. Literature Survey 

Custom Convolution Neural Network (CNN) for classifying the plant into diseased or healthy based on the leaf image has 

been proposed by Trivedi J. et.al [1]. They used a dataset that consists of 54,305 images which are divided into 15 different 

classes of healthy and diseased plant leaf images. The CNN architecture is used consisting of several convolution layers along 

with pooling layers and dropout layers. A fully connected layer is then stacked at the end of the architecture that does the 

final classification. The model achieved an accuracy of 95.81%. V. Kumar et.al. have used residual network- ‘RESNET-34’ ar-

chitecture, a type of CNN used to classify a plant disease based on a leaf image. RESNET-34 is a pre-trained model that is 

trained on the ImageNet dataset. Transfer learning is done on this network, retraining it on a dataset consisting of 15200 

images covering 14 unique crops and divided into 38 different classes. The data is derived from - Original Plant Village Da-

taset. Using the proposed technique, they have achieved an accuracy of 99 percent.[2] 

  In [3], the authors have compared AlexNet and SqueezeNet architecture for the detection of diseases in Tomato plants. 

They have chosen 10 different classes for their study from the 'Plant village dataset'. Both the CNN architecture performed 

well, although the performance of Alexnet was slightly better. Further, they suggested that these neural networks can be 

added to the robot [4] for real time disease detection capability. 

  To increase the prediction accuracy, we need to have a robust network so that network could learn various features and 

classify accordingly. But training deep neural networks sometimes lead to vanishing gradient problems due to which the 

network may perform poor. In [5], the study has been done to address the degradation problem due to vanishing gradient. It 

has been suggested that the shortcut connections can be introduced in the network which will enable the network to retain 

the information and hence can perform well. These shortcuts are essentially Identity mapping and introducing them in the 

network does not increases any extra parameter. 

  Jayme Garcia Arnal Barbedo, Luciano Koenigkan, and Andrea Roberto Bueno Ribeiro have proposed a four-step approach 

to count the cattle. Steps are CNN to delineate the region of interest, colour transformation to segment animals, cluster sep-

aration, and image matching to compensate for image overlap. The results showed that the calves were 99% correctly de-

tected when they were alone, but in a cluster, i.e., when the calves were either touching one another or shadowing the oth-

er, the results dropped to 71%.[6] Wen Shao, Kawakami Rei, Ryota Yoshihashi, and Shaodi You have used a CNN-based sys-

tem called YOLOv2 which is a fast and precise CNN to detect the number of cattle in different images. They have merged all 

the images to estimate the total count. They utilize a pipeline and an algorithm to merge detection results using a 
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three-dimensional model reconstructed by SfM to avoid double count. The estimated cattle count was +-3 to the true value 

of dozens of cattle.[7]  

  Gemert, Jan & Verschoor, Camiel & Mettes, Pascal & Epema, Kitso & Koh, Lian & Wich, Serge defined two tasks: i) animal 

detection and ii) animal counting. To evaluate these tasks, they manually recorded and annotated a new dataset with a 

quad-copter drone. The animal detection task was benchmarked with three lightweight object detection algorithms that are 

suitable for on-board implementation since their potential detection speed is less than 1 second per image. The animal 

counting was based on frame-based detections in combination with point tracks obtained by a KLT tracker. [8] 

In [9], The authors presented their research on using deep learning to detect cattle. They put 15 different CNN architectures 

to the test, looking at things like low illumination, excessive brightness, blur, and so on. NasNet Large produced the best re-

sults in terms of accuracy, with the Xception architecture producing very high accuracies with a fraction of NasNet's training 

times. They suggested using YOLO to draw a bounding box around the subject as the future work. 

  In [10], The authors evaluated the performance of Faster RCNN, YOLOv3, and SSD for cattle detection and counting. Across 

a range of scenarios, average precision scores of 86%, 91%, 95% of bounding box and 84%, 90%, 94% for mask, as well as 

counting accuracy of 90%, 92%, 94% and recall of 91%, 95%, 96% were detected. The results presented indicate that Mask 

R-CNN could be utilized in practical settings as a method of livestock detection and counting using a quadcopter. 

  It can be observed that in the case of crop diseases, Resnet based architecture has proved to be very efficient for achieving 

more than the desired accuracy. However, the architecture is a bit computationally heavy. The network size can be de-

creased by using various optimization techniques like pruning and at the same time preserving its robustness. Additionally, 

the systems for monitoring the cattle proposed by various researchers used CNN-based models which delivered good results, 

but performance decreased in case of huge clusters or when motion was detected. 

3. Problem Definition 

Agriculture in India faces many challenges in terms of productivity, reliable detection and accurate identification of crop dis-

eases, and labour shortage. The system will detect and identify the diseased crops, and the user will be notified via a mes-

sage. The system will keep an accurate count of the livestock to prevent illegal killing or theft of cattle of particular farmland. 

The aim is to automate and increase the efficiency of the agriculture processes. 

4. Proposed System Overview and Methodology 

The proposed system will strengthen the agricultural practices by eliminating the problems faced by the farmers - monitoring 

the health of the crop and cattle management. The model will function in two modes - plant disease detection and cattle 

monitor. The user will have to select the mode for which they want the information. According to the mode selected, the 

pre-processed image will be passed either through the disease detector or cattle count detector. In crop disease detection 

mode, the images of the leaves will be taken as input. It will give the type of disease as output if any. In cattle count mode, 

the system will give the count of the cattle as output from the input images.  

  The disease detector is based on ResNet, which is a CNN-based architecture. Unlike normal CNN, it contains residual blocks 

that help in retaining the information of the image when passed through the network. ResNet is a model that is pre-trained 

on ImageNet Database. A pre-trained model helps get higher accuracy by just using a small amount of data, which saves 

time. In disease detector mode, the pre-processed image will undergo segmentation. The region of interest (ROI) from the 

segmented image will be localized. The final step is to classify whether a plant is healthy or not. If the plant is infected, then it 

will identify the type of disease.   
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Figure. 1 Proposed System Architecture 

   

  For plant disease classification, we have used the “New plant village dataset” that contains 87,867 RGB images of healthy 

and diseased crop leaves which are categorized into 38 different classes. This dataset is divided into an 80/20 ratio of training 

and testing sets.  Various augmentation has been done on this data before feeding it to the model to make the model more 

robust. The model which we have used is Resnet as we can see in figure 2. Resnet is a state-of-art residual neural network 

that has proved to be very efficient in computer vision and object detection tasks. A residual block makes the use of skip 

connection to addresses the vanishing gradient problem. This shortcut guarantees the network integrity if the regular con-

nection’s co-efficient converges to zero.  

 

Figure. 2 Resnet 50 Residue Block 
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  Transfer learning is used for training the model for our use-case. Using a pre-trained model is beneficial because it saves a 

lot of training time. Pre-trained Resnet architecture trained on ImageNet - which is a huge dataset comprising of different 

image categories, is taken as starting base model. This is because we wanted the model to retain its feature extraction 

knowledge which it has learned on the ImageNet dataset. At the end of model architecture various layers such as convolution 

layer, batch normalization, and finally fully connected dense layers are stacked to finetune it for our purpose. After training 

the model is integrated into the system for inferencing. An image of plant leaves is to be fed to the system. This image will be 

reshaped into 256*256 pixels and given to the model for classification. The model gives out the class of images. The cattle 

count detector is implemented using YOLOv3. The architecture of YOLOv3 can be seen in figure 3 below. YOLOv3-tiny is used 

because it gives better accuracy compared to other algorithms. In cattle count mode, the pre-processed image will undergo 

segmentation. The next step is feature extraction for cattle detection. After that, the inference will run, and it will give 

bounding boxes for the cattle. Finally, the cattle will be counted based on the number of bounding boxes. 
 

 

Figure. 3 YOLOv3 Architecture 

   

We have created our own dataset consisting of around 50 images that contain plenty of cattle. We are considering four types 

of cattle i.e., cows, buffalos, sheep, and camels. Individual animal from each image is extracted and labelled for training. This 

dataset is randomly divided into train and test in the ratio of 90/10. For training, we will be using the YOLOv3-Tiny model - a 

variant of Darknet. YOLO is an object detection algorithm that is fast and accurate as a Single Shot MultiBox (SSD). We are 

using YOLOv3-Tiny and not YOLOv3 because it requires less computation, and it is good for embedded devices like Raspber-

ry-pi. It applies a single neural network to the full image, and then divides the image into regions and predicts bounding box-

es and probabilities for each region. We retrain the already trained model for our data. After every 1000 epoch of training 

weights will be updated and saved into the file. After training, the model is integrated into the system for inferencing. An 

image or video frame can be passed to the model where the segmentation will take place. The model will divide images into 

different segments of images. These individual segments will be labeled into a class.  The model then returns a plethora of 

bounding boxes that are then reduced through Non-max Suppression, a type of filtering. This results in fairly accurate detec-

tion of different classes. As an output, we will get all the detected objects along with the class labels, confidence score and 

location of the bounding box in a form of a list. The resultant data from either mode will then be updated into the database. 

The user will request the database for the required data, and the database will respond to the user request. 
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5. Result and Analysis 

Table 1 Model Summary 

Parameters Value 

Total parameters 48,868,305 

Trainable parameters 25,255,469 

Non-trainable parameters 23,612,836 

Learning rate 0.001 to 0.0001 

 

  For Plant Disease detection, our model gave almost 99% accuracy. The model summary is given in Table 1 above. Previ-

ously, many authors have got similar accuracy, but none of them have used augmented data. Our training method used arti-

ficially augmented data that makes our model ready to use on real-world images. Machine learning and deep learning mod-

els are as good as the data on which they are trained and for their performance, they require the type of data on which they 

are trained on. The dataset which we have used contains a single leaf image in each image file, and that too on the back-

ground which is easily distinguishable from the foreground object (i.e., leaf). But in the real world, we can’t expect to get 

such an image. Our use case is images from drones i.e., the system will be getting images containing several leaves with a 

background containing some more vegetation. To make the system work with such images, we artificially augmented the 

images to produce similar conditions and used those images to train our model. The proposed system will be able to work in 

the real world reliably. We already got the validation accuracy of 99% i.e., similar to that of training accuracy, and several 

tests on real-world images also show a good prediction as seen in figure 4.   

 

Figure. 4 Validation result of crop disease detection 
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  For cattle count detection, our main task was to correctly detect the position, height and width of the box around the ani-

mal present in the image. For this, our model was correctly able to detect these parameters with an accuracy of 73.2319%. 

Previously, authors narrowed down their focus on counting only one type of animal, but we have considered 4 types of ani-

mals where along with good detection accuracy, we can classify the detected animal and provide the count of each animal 

present. Other studies show that researchers used a four-step-approach to count cattle with a large dataset which gave them 

good accuracy in detecting the cattle and non-cattle. With our model, we got close enough results in detecting the animal 

from its surrounding with little false positives after training on an extremely small-sized custom dataset as seen in figure 5.   

 

Figure.5 Cattle detection 

  Our model was able to process 6-7 images/frames per second with an estimated cattle count of +-3 to the true value per 

dozen when the animals were scattered around in the field. The error rate increases when cattle were close to each other i.e., 

when animals in the image were overlapping each other. The analysis showed that our single model performed better than 

most of the previous works even against all of them combined. 

6. Conclusion 

The proposed system shows how computer vision and deep learning can help eliminate the problems faced by farmers by 

monitoring their livestock and crop health. The system will enhance agricultural productivity and improve the overall effi-

ciency of agricultural practices. The farmers will be able to receive updates regarding the inconsistencies in their crops or 

cattle count by using this system. The system will serve as an aid to farmers enabling fast and efficient recognition of plant 

diseases and assist in keeping track of their cattle. The government agencies will be able to get regular updates regarding the 

crop health data, which was traditionally done by visiting the farm once a year. 
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