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  Abstract 

In order to develop electric vehicles, it is vital to be able to accurately estimate the state 
charge (SOC) of a lithium battery. To address the problem that the Extended Kalman 
Filter (EKF) algorithm leads to the Taylor expansion truncation of the higher-order sys-
tem. In this paper, a system of state-space equations is established based on the second-
order equivalent circuit model, and a simplified-sphere sample approach is used to im-
prove the Unscented Kalman Filter (UKF) algorithm. The SOC estimation performance of 
the three algorithms is tested under constant current discharge, pulse dis-charge condi-
tions, and UDC conditions, respectively. The simulation results show that Simplified-
spherical Unscented Kalman Filtering (SUKF) has smaller errors between SOC estimation 
and theoretical reference values than EKF and UKF. The SUKF is less computationally 
intensive than UKF and has better timeliness in the onboard battery management sys-
tem. 

Keywords 

Electrical Vehicle, State of Charge estimation, Extended Kalman Filter, Unscented Kal-
man Filter, Urban Driving Cycle 

 

1. Introduction 

Electric vehicles are powered by power batteries and the performance of those batteries directly determines the safety of 

those vehicles during operation. Currently, for the monitoring and control of batteries in electric vehicles, the most common 

method is to select a suitable Battery Management System (BMS) [1-2]. The main functions of the BMS can be divided into 

battery cell balancing system, State of Charge (SOC) estimation, State of Power (SOP) estimation and State of Health (SOH) 

estimation, etc [3]. Among them, the battery charge status will change rapidly with the change of vehicle running speed, and 

the inaccurate SOC value will affect the user experience and the future range estimation [4]. Therefore, how to obtain accurate 

battery SOC value by algorithm is the key problem that needs to be solved [5]. 
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According to the principle of SOC estimation algorithms, the algorithms can be divided into four categories: the open-circuit 

voltage method as the representative of the table-checking method, the mathematical theory-based Ampere-time Integration 

(AHI) method, the model-based Kalman Filtering (KF) algorithm and Robust Filtering (RF) algorithm, and the data-driven algo-

rithm like Artificial Neural Network (ANN) and Support Vector Machine (SVM) [6-8]. At present, the industry commonly uses 

the open-circuit voltage method and the AHI method to realize the online monitoring of battery SOC. However, in the process 

of battery use, due to the polarization effect in the process of battery charging and discharging, and considering the sensor 

accuracy and error, the implementation of lithium battery SOC estimation by the open-circuit voltage method will produce 

large errors [9]. The AHI method requires the accurate initial SOC value in the algorithm, cause inaccurate initial SOC value will 

lead to a large error in the subsequent estimation of the whole algorithm. Although the data-driven-based method is more 

effective and accurate, it requires a large amount of experimental data as training samples and has higher requirements for 

processors and larger computational effort. Therefore, the current research focuses on Kalman Filtering algorithms [10]. 

For the nonlinear system with higher-order terms, the Extended Kalman Filter (EKF) algorithm uses Taylor expansion, which 

will lead to truncation error and filter divergence [11-13]; at the same time, the Jacobian matrix needs to be calculated at each 

cycle estimate, increasing the computational complexity of the system [14]. Therefore, the literature [15] proposes to imple-

ment lithium battery SOC estimation by the Unscented Kalman Filter (UKF) algorithm. In the UKF algorithm, no linearization of 

the nonlinear system is necessary [16-17]. Instead, the unscented transformation is combined with a Kalman Filter algorithm, 

and a suitable sampling strategy is applied to approximate the state variables, which is able to avoid the error induced by the 

EKF hair due to its disregard for higher-order terms [18]. However, the UKF algorithm needs to recalculate the sigma point set 

at the end of each cycle, which will lead to a large computational effort for the whole algorithm and high requirements for the 

central processing chip of real-time SOC estimation [19-20]. Therefore, this paper uses a Simplified-sphere Unscented Kalman 

Filter (SUKF) algorithm to implement SOC estimation, which simplifies the hypersphere monomorphic sampling strategy, thus 

reducing the computational effort of the whole algorithm. 

2. Model building and parameter identification 

2.1. Battery Equivalent Circuit Modeling 

In order to more accurately characterize the electrical properties of LiFePO4 battery, an equivalent circuit model is generally 

established to reflect the external characteristics of the lithium battery. Currently, Rint, Thevenin, PHGV, S-ECM, RC and sec-

ond-order models are all common equivalent circuit models [21]. Since the second-order RC equivalent model has no significant 

difference in accuracy compared to the third-order or higher-order models, and the constructed matrix is of lower order and 

less computationally intensive and can describe the different polarization characteristics of the battery more accurately than 

the Thevenin model, the second-order RC model is used in this experiment [22]. Its corresponding circuit model is shown in Fig 

1. 
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Figure 1. Second-order RC equivalent circuit model 

Where ocU
is the open circuit voltage of the battery, oR

is the ohmic internal resistance, which is mainly used to respond to 
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the sudden change of terminal voltage during the charging and discharging process of the battery. 1C
and 1R

denote the 

electrochemical polarization capacitance and resistance, respectively, and the RC link composed of 1C
 and 1R

 simulates 

the electrochemical polarization effect of the battery, 2C
and 2R

denote the concentration difference polarization capaci-

tance and resistance, respectively, and the RC link composed of 2C
 and 2R

 simulates the concentration difference polari-

zation effect [23-25]. The parameters of the circuit components in the second-order RC model change when SOC changes. The 

mathematical model of the circuit according to Kirchhoff's law is: 

1 2out oc oU U U U R I= − − −  (1) 

1 1

1 1 1

1 1
( )U U I t

R C C
= − +  (2) 

2 2

2 2 2

1 1
( )U U I t

R C C
= − +  (3) 

Where 1U
is the voltage across the polarization circuit 1 1R C

, 2U
is the voltage across the polarization circuit 2 2R C

, and t  
is the charge/discharge time. 

By discretizing the battery model, the discrete state equation and output equation are obtained as 

1 ,k k L k kx Ax BI w+ = + +  (4) 

, 1 1, 2,o k oc k k k k oU U SOC U U I R+ = − − −  (5) 
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where sT
 is the sampling time, kw

is the process noise, and kv
 is the observation noise. 
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2.2. Second-order equivalent model identification 

To accurately determine the individual electrical primary parameters in the second-order equivalent RC circuit model, the data 

corresponding to each SOC state must be obtained and fit using the least squares method [26-28]. The SOC value of a lithium 

battery can be expressed by Eq 9. 

0
0

( )

t

L

t

N

I d

SOC SOC
Q

  

= −


 
(9) 

Where tSOC
is the SOC value at moment t , 0SOC

is the SOC value in the initial state, is the rated capacity of the lithium 

battery in Ah, n is the charge/discharge Coulomb efficiency, and LI
is the current of the lithium battery at moment t . 

In order to be able to accurately obtain the individual component parameters in the second-order equivalent circuit model of 

the Li-ion battery, it is necessary to perform tests by the static method and the HPPC method, followed by fitting based on the 

curves. The data obtained by the static method and HPPC experiments are summarized in Table 1 

Table 1. Second-order equivalent model parameters at different SOC value 

(%)SOC  ( )OCV V  ( )bR   1( )R   1( )C F  2 ( )R   2 ( )C F  

100.00 3.4458 0.0294 0.0314 254.1 0.0234 12217.8 

90.02 3.2843 0.0295 0.0054 662.8 0.0234 12217.8 

80.04 3.2772 0.0295 0.0051 664.3 0.0293 8269.2 

70.07 3.2552 0.0292 0.0052 673.4 0.0321 9573 

60.09 3.2428 0.0346 0.0053 0.599.9 0.0188 19124.6 

50.11 3.2372 0.0331 0.0053 0.587.1 0.0337 8636.7 

40.13 3.2285 0.0332 0.0050 0.597.0 0.0402 6999.0 

30.16 3.2025 0.0339 0.0054 0.584.4 0.0391 8976.4 

20.18 3.1674 0.0351 0.0057 0.547.9 0.0451 7130.4 

10.20 3.1094 0.0340 0.0051 0.590.6 0.0637 4855.9 

0.22 2.2051 0.0333 0.0085 0.526.1 0.1703 2562.8 

By fitting the SOC-OCV curve by the least squares method, the electrical characteristics curve of this battery can be obtained 

as shown in Fig 2. 

 
Figure 2. OCV-SOC curve during constant current discharge 

The ninth-order expression for fitting the OCV-SOC curve by the least squares method will be 
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9 8 7 6 5

4 3 2

581.459 2589.76 4705.02 32935.14 26781.84

11641 2482.852 148.7085 25.3186 3.26412

OCV SOC SOC SOC SOC SOC

SOC SOC SOC SOC

= − + − − +

− + − − +
 (10) 

In the process of building the mathematical model, in order to reduce the computational effort, the other parameter values 

inside are generally divided linearly according to the interval where the SOC value is currently located. 

3. Simplified-sphere Unscented Kalman Filtering Algorithm 

3.1. Extended Kalman filtering algorithm 

The Kalman Filter algorithm is suitable for linear systems but is not applicable to the battery SOC estimation process due to the 

strong nonlinear nature of the external battery characteristics [29-30]. Therefore, the EKF algorithm is generally used after 

linearizing the nonlinear system. The discrete equations of the nonlinear system can be transformed into 

1 ( , )k k k kx f x u w+ = +  (11) 

( , )k k k ky g x u v= +  (12) 

where ky
is the output value at time k , kx

 is the state variable at time k , ku
is the control input variable of the system, 

kv
 is the system observation noise, 

( , )k kf x u
 is the nonlinear state transfer function of the system, and 

( , )k kg x u
 is 

the nonlinear observation function of the system. 

To find an estimate of the state vector in the discrete system described in Eq, we can use the EKF algorithm. The whole process 

is outlined in Eq.13 to Eq.17. 

Status Forecast: 
1| 1

ˆ ˆ( , )k k k kX F X U+ +=  (13) 

Error covariance prediction: 1| 1

T

k k k k k kP A P A Q+ += +  (14) 

Kalman filter gain: 
1

1 1| 1 1 1| 1 1( )T T

k k k k k k k k kK P C C P C R −

+ + + + + + += +  (15) 

Update status estimates: 1 1| 1 1 1|
ˆ ˆ ˆ

k k k k k k kX X K Y Y+ + + + +
 = + −
   (16) 

Update error covariance: 1 1 1 1| 1 1( ) ( )T T

k k k k k k k k k kP I K C P I K C K R K+ + + + + += − − +  (17) 

Where, kA is the state transfer matrix, kC is the measurement matrix, kQ is the process noise, kR is the variance matrix 

of the measurement noise kW , and kK is the Kalman filter gain coefficient. 

3.2. Unscented Kalman Filtering algorithm 

The main idea of the EKF algorithm is to linearize the nonlinear system by Taylor expansion. However, such a forced transfor-

mation will cause Taylor truncation errors, the higher-order terms are neglected, which may cause the filtering system to di-

verge, and the EKF algorithm linearizes the nonlinear equations and obtains a locally optimal solution [31]. Only when both the 

state and observation equations are continuous and the degree of nonlinearity is low, it can converge to the global optimum 

better [32-33]. In order to overcome the higher order truncation error of the EKF algorithm at the second order and above, the 

unscented transform is introduced into the Kalman filter algorithm to construct the UKF algorithm. 

Before performing the UKF algorithm, it is necessary to first construct the sigma point by Eq.18 and Eq.19. 
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After that, the sigma point set is passed nonlinearly according to the following equation: 

( ), 0, ,2i iy f x i n= =  (20) 

Calculate the mean and covariance of y according to the following two equations: 
2

0

ˆ
n

i i

m

i

y y
=

=  (21) 

2

0

ˆ ˆ( )( )
n

i i i T

y c

i

P y y y y
=

= − −  (22) 

By contrast to the EKF algorithm, which must linearize the nonlinear function, the UKF algorithm can be directly applied to the 

battery model for SOC estimation, thereby reducing system estimation errors and improving algorithm accuracy. 

3.3. Simplified-sphere Unscented Kalman Filtering algorithm 

In the UKF algorithm, each recalculation of the sigma point set generates a large amount of computation; therefore, it can be 

achieved by a smaller computation by Simplified-sphere Unscented Kalman Filter (SUKF) algorithm. The Simplified-sphere sam-

pling strategy is used to perform the square root UKF operation, and the prediction equation and update equation are modified 

accordingly to form the SUKF algorithm. The steps of the SUKF algorithm to implement SOC estimation are as follows. 

First, select 00 1W 
. 

Determine sigma weights based on 0W
 by Eq.23: 

01
, 1,2, , 1

1
i

W
W i n

n

−
= = +

+
 (23) 

With this sampling method, the distance from the sigma point to the center x̂  will gradually become farther and farther as 

the dimension of x  increases, resulting in a non-local sampling effect. Therefore, the problem of non-local effects needs to 
be solved by the proportional sampling correction algorithm shown in the following equation: 

2

0

2

1 ( 1) / , 0

/ , 0
i

i

W i

W i






 + − =
= 


 (24) 

where  is a scaling factor that controls the Cartesian distance between the sampling points and the mean value. 

When the dimension of the input state equation is 1, the sequence of initialized vectors is 
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   
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 (25) 

When the dimension of the input state equation is greater than 1, the sequence of initialized vectors is 
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 (26) 

where j  is the dimension of the vector and i  is the order of the sampled points. 

Based on the above equation, the sigma weights can be defined as 

0

2

0

, 0

, 0

(1 ), 0

, 0

m
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i

c

i

i
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i

i

i
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



=
= 


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

 (27) 

Where 
m

i  and 
c

i  are the predicted weights of the corrected mean and variance, respectively, and the   and 


 are 
the factors that mediate the sigma point distance and higher order information. 

After that, the system state mean, and covariance are added to generate sigma points as 

ˆ j

i xx ix P = +  (28) 

Compared with the UKF algorithm, the SUKF algorithm reduces the number of sigma points from 2 1n+  to 2n+ , which 

results in better filtering in real time and better overall filtering performance. 

4. Experimental testing 

4.1. Constant current discharge test 

As a test method to do the common SOC estimation algorithm, constant current discharge test uses a constant current dis-

charge, and the product of discharge current and time is the remaining power, which can mainly simulate the working envi-

ronment of lithium battery in the process of electric vehicle overhaul. In this designed constant current discharge experiment, 

the battery discharge current is set to be constant at 0.8 A. Fig 3 shows the test results of lithium battery constant current 

discharge in a noisy environment, and the SUKF algorithm used in this paper can keep the maximum error amplitude within 

0.01%, and the result filtering performance is stronger compared to EKF and UKF algorithms. 
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Figure 3. SOC estimation and error curve of three algorithms under constant current discharge 

4.2. Pulse discharge test 

The pulse discharge test can simulate the change process of SOC during the fast start of electric vehicle. Setting that Li-ion 

battery has a 100% charge at the beginning, 3000~4000s, 5000~6000, and 7000~8000s are operated upon in order to control 

output current of Li-ion battery. The SOC value is then estimated using three algorithms. Fig 4 shows the simulation result. 

Throughout the process, the difference between the SOC estimation curve obtained by SUKF and the real SOC curve is smaller 

and the algorithm yields better results. 

 
Figure 4. SOC estimation and error curve of three algorithms under pulse discharge test 

4.3. UDC working condition 

The UDC technique is used to test the performance of the three algorithms under the actual, complex driving conditions of the 

road. Fig.5 shows the change in current during the entire process, allowing the accuracy of the model to be verified. Fig. 6 

shows SOC estimation and corresponding error values in this case. In this simulated real-working environment, the SUKF algo-

rithm achieves a higher level of accuracy than the other two algorithms due to its greater robustness. 



  Y. Wang 
 

 

ISSN (Online) : 2582-7006       
                                                          

9 
Journal of Informatics Electrical and Electronics 

Engineering (JIEEE) 
A2Z Journals  

 

 

 
Figure 5 Current variation curve under UDC conditions 

 
Figure 6. SOC estimation and error curves of three algorithms under UDC operating conditions 

5. Conclusion 

Simulation tests were conducted under different working conditions to observe the error size of the three algorithms to im-

plement the Li-ion battery SOC algorithm. Compared with the EKF and the UKF, the error between the SOC value and the real 

value obtained by the SUKF algorithm used in this paper under different working conditions is smaller and the robustness 

performance is better. 
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