
 Journal of Informatics 
 Electrical and Electronics Engineering, 2021,  
 Vol. 02, Iss. 03, S. No. 001, pp. 1-16  
 ISSN (Online): 2582-7006   

 

  

 

ISSN (Online) : 2582-7006      
                              

1 
Journal of Informatics Electrical and Electronics 

Engineering (JIEEE) 
A2Z Journals  

 

 

 
 

Multilevel SVM and AI based Transformer 
Fault Diagnosis using the DGA Data 

GVSSN Srirama Sarma1, B. Ravindranath Reddy2, Pradeep M. 
Nirgude3, Vasudeva Naidu4   

1Research Scholar, JNTUH & Assistant Professor, Dept. of Electrical and Electronics Engineering, Matrusri Engineering College, Saidabad, 
Hyderabad, India 
2Deputy Executive Engineer & JNTUH University, Kukatpally, Hyderabad, India 
3Additional Director, UHV Research Laboratory, CPRI, Hyderabad, India  
4Associate Professor, Dept. of Electrical and Electronics Engineering, Matrusri Engineering College, Saidabad, Hyderabad, India 
1music.sarma2016@gmail.com, 2bumanapalli_brreddy@yahoo.co.in, 3pmnirgude@cpri.in, 4pvdnaidu81@gmail.com  
 

How to cite this paper: G. V. S. S. N. S. Sarma, 
B. R. Reddy, P. M. Nirgude, and V. Naidu, 
“Multilevel SVM and AI based Transformer 
Fault Diagnosis using the DGA Data,” Journal 
of Informatics Electrical and Electronics Engi-
neering, Vol. 02, Iss. 03, S. No. 001, pp. 1–16, 
2021. 
 
http://doi.org/10.54060/JIEEE/002.03.001 
 
Received: 02/11/2021 
Accepted: 20/11/2021 
Published: 27/11/2021 
 
Copyright © 2021 The Author(s).  
This work is licensed under the Creative 
Commons Attribution International License 
(CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0
/ 

   

  Abstract  

The Dissolved Gas Analysis (DGA) is utilized as a test for the detection of incipient prob-
lems in transformers, and condition monitoring of transformers using software-based 
diagnosis tools has become crucial. This research uses dissolved gas analysis as an in-
telligent fault classification of a transformer. The Multilayer SVM technique is used to 
determine the classification of faults and the name of the gas. The learned classifier in 
the multilayer SVM is trained with the training samples and can classify the state as 
normal or fault state, which contains six fault categories. In this paper, polynomial and 
Gaussian functions are utilized to assess the effectiveness of SVM diagnosis. The results 
demonstrate that the combination ratios and graphical representation technique is 
more suitable as a gas signature, and that the SVM with the Gaussian function outper-
forms the other kernel functions in diagnosis accuracy. 
  

Keywords 

Dissolved gas analysis, multilevel Support vector machine, Kernel Functions, Trans-
former fault diagnosis, Combination of ratios and graphical representation 

 

1. Introduction 

In power systems, transformers play a critical role. Any malfunction in the transformer could result in an outage and, as a 

result, a disruption in service. It's critical to spot a transformer issue early on. The key-gas ratios C2H2/C2H4, CH4/H2, and 

C2H4/C2H6 have a strong relationship with transformer failures. The ability to forecast these key-gas ratios in transformer oil is 

critical for detecting and identifying transformer incipient breakdowns early. Because of its nonlinearity and the limited amount 
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of training data, forecasting key-gas ratios in transformer oil is a difficult challenge. The use of software-based diagnosis tools 

to monitor the condition of transformers is critical, and DGA is considered an excellent test for detecting incipient transformer 

defects. The examination of certain dissolved gas concentrations in a transformer's insulating oil provides information about 

the state of the transformer, allowing required preventive steps to be taken. Due to the variability of gas data, standard ap-

proaches fail to identify the faulty condition, making it a difficult and time-consuming task. The key gas analysis, Rogers Ratio 

technique, IEC gas ratio code (IEC-60599), Doernenburg Ratio method, and Duval triangle method are all traditional ways to 

diagnose a transformer issue utilizing the DGA method. These diagnostic approaches do not provide much information regard-

ing incipient defects, which can lead to a state of indecision. The support vector machine with genetic algorithm (SVMG) de-

veloped by Sheng-wei Fei et al [1] is applied to fault diagnosis of a transformer, in which the genetic algorithm (GA) is used to 

select appropriate free parameters of SVM, and the experimental results showed that the SVMG method provided higher 

diagnostic accuracy. According to A. Akbari [2] et al, condition-monitoring and software-based diagnosis tools are effective 

maintenance management strategies for transformers. Agent-based systems have been developed for complex systems with 

relatively simple individual agents, and Multiagent systems have been used to overcome complexities. An intelligent fault clas-

sification approach to power transformer dissolved gas analysis (DGA) was given by A. Shintemirov et al [3] and Y.-j. Sun et al 

[4], which dealt with highly varied or noise-corrupted data. To increase the interpretation accuracy for DGA of power trans-

formers, bootstrap, and genetic programming (GP) are used. For fault classification, the features retrieved by GP are fed into 

artificial neural networks (ANN), support vector machines (SVM), and K-nearest neighbor (KNN) classifiers. The combined clas-

sification accuracies are compared and determined to be good. Tang [5], [6] introduced a Parzen–Windows (PW)-based trans-

former failure diagnostic classifier that uses a probabilistic scheme to interpret transformer dissolved gas analysis (DGA). To 

increase fault classification accuracies, a global optimizer called particle swarm optimizer (PSO) is used to tune the parameters 

of PW. 

  For the fault detection of power transformers, C.P Hung et al introduced a unique cerebellar model articulation controller 

(CMAC) neural network (NN) technique. The results of the different standards are analyzed using fuzzy logic and then compared 

with the empirical test. The comparison is made between the suggested methods and existing methods indicates the capability 

of the suggested method in the on-line fault diagnosis of transformers and the results are validated in the fault diagnosis of 

transformers. According to Rahmatollah Hooshmand [7, 8] et al. Sheng-wei Fei [9, 10] et al presented a support vector machine 

with genetic algorithm (SVMG) to forecast key-gas ratios in power transformer oil, and genetic algorithm (GA) is used to deter-

mine free parameters of support vector machine. The SVMG model is shown to be a proper alternative for forecasting key-gas 

ratios in power transformer oil. R.N. Afiqah [11, 12] stated that "Detection of new faults in the transformer early is very im-

portant to prevent accidents and to reduce related material losses," and "Conventional methods used in the implementation 

of DGA are improved by using intelligent systems." In this study, the IEC ratio method, one of the classical methods is used, 

and an intelligent fuzzy-based analysis is performed using MATLAB. The results of fuzzy logic and genuine faults are presented 

in the table, along with a comparison of the IEC approaches, LV Ganyun [13 - 17] et al. SVM stands for support vector machine, 

and it's a new machine learning [18,19] method based on statistical learning theory (SLT). For problems with little sampling, 

nonlinearity, and high dimension, SVM is a powerful tool. This paper is the one to use a multi-layer SVM classifier to diagnose 

transformer faults. The content of five diagnostic gases dissolved in oil, as determined by dissolved gas analysis (DGA), is pre-

processed, and six features are extracted for SVMs. The aforesaid data processing is then used to train the multi-layer SVM 

classifier with the training examples collected. The trained classifier then identifies the four different types of transformer 

faults. The classifier performs well in terms of training speed and reliability, according to the test findings. 

  The SVM classification is utilized in this paper to assess the state and appropriate gas name signature. The difficulty of de-

tecting the proper fault situation and the diagnostic accuracies for transformers under fault classifications are determined by 

these factors. The key gas, ratios, and graphical representation approaches are all DGA methods that are used as inputs to SVM 
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classifiers for fault classification.  

  The remainder of this paper is structured as follows: Section 2 presents DGA fundamentals. Section 3 explains concepts of 

SVM and its mathematics, section 4 details transformer faults classification based on SVM, section 5 gives results and discus-

sions and finally Section 6 describes conclusions. 

2. DGA Fundamentals  

Because transformer equipment is so expensive, it must be properly monitored while in use. DGA is first used to monitor the 

status of a specific transformer and has since received widespread approval among professionals. DGA can be used to deter-

mine the most likely situation inside transformers, provide early warnings and diagnoses, and boost the chance of acting ap-

propriately, similar to how doctors check a human body with a stethoscope. DGA is a sensitive and reliable technology for 

locating problems in power transformers [20-25]. It is possible to distinguish fault in a wide range of oil-filled equipment using 

this technique. A coded list of problems identifiable by DGA is provided in IEC Publication 60599. Partial discharge (PD), low 

energy discharge (D1), high energy discharge (D2), thermal faults T 3000 C (T1), thermal faults 3000 T 700 C (T2), and thermal 

faults T > 7000 C are examples of transformer faults (T3). The key gas technique, IEC ratios method, and graphical representation 

method are the DGA interpretation methods used to detect the incipient failure.  

  The most important gas technique is the key Gas method. Five key gas concentrations are used in this method: hydrogen 

(H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) accessible for consistent fault interpretation. The 

diagnostic interpretations of the IEC 60599 for the five gases H2, CH4, C2H2, C2H4, and C2H6 used to detect various types of 

problems are shown in the table.1 below.  

Table 1. Diagnostic Interpretations of The IEC 60599 

Gas detected Interpretation 

Oxygen(O2) Transformer seal fault Oxide carbon (CO) 

Oxide carbon Cellulose decomposition 

Dioxide carbon Cellulose decomposition 

Hydrogen(H2) Electric discharge (corona effect, low partial discharge   

Acetylene(C2H2) Electric fault (arc, spark) 

Ethylene(C2H4) Thermal fault (overheating local) 

Ethane(C2H6) Secondary indicator of thermal fault 

Methane(CH4) Secondary indicator of an arc or serious overheating 

 
  The ppm concentration values range in the transformers according to IEC 60599 are given in Table.2. 
 

TABLE 2. ppm concentration values range in the transformers according to IEC 60599 

Gas H2 CH4 C2H6 C2H4 C2H2 CO CO2 

Concentration (ppm)  60–150 40–110 50–90 60–280 3–50 540–900 5100–13,000 
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  The IEC Ratios method employs the following five gases: H2, CH4, C2H2, C2H4, and C2H6, as well as the following gas ratios: 

C2H2/C2H4, CH4/H2, and C2H4/C2H6. The following table correlates fault categories to gas ratios, and decisions are made such 

that when key-gas ratios surpass their specific limitations, an incipient fault in the transformer has occurred. Diagnosis using 

the ratio method (IEC 599) is given in the table 3. 

 

TABLE 3. Diagnosis using the ratio method (IEC 599) 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  The approach of graphical depiction utilizing Duval's triangle is discussed as below. 
 
 

 
 

Figure 1. Coordinates and fault zones of the Duval’s triangle [26]. 

 

Fault type C2H2 / C2H4 CH4/H2 C2H4/C2H6 

PD ,0.1 <0.1 <0.2 

D1 >1 0.1-0.5 >1 

D2 0.6- 2.5 0.1-1 >2 

T1 <0.1 >1 <1 

T2 <0.1 >1 1-4 

T3 <0.1 >1 >4 
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TABLE 4. Representation Method for zone limits 

 
 
 
 
 
 
 
 
 
 
 
 
 

  The concentrations (in ppm) of CH4, C2H2, and C2H4 are stated as a percentage of the total (CH4 + C2H4 + C2H2) and character-

ized as a point (percent CH4, percent C2H4, percent C2H2) in a coordinate system depicted as a triangular diagram shown in 

figure .1 with different zones. Each zone corresponds to a specific fault category.  

  Partial Discharge (PD) or Corona Discharge (CD): PD occurs in the gas phase of voids or gas bubbles. It is easily identified by 

DGA. As it is produced over long periods of time and within large volumes of paper insulation, it frequently generates large 

amounts of hydrogen. 

Thermal faults T <300°C (TI): TI evidenced by paper turned brownish. 

Thermal faults 3000 <T<700 °C (T2): T2 evidenced when paper carbonizes. 

Thermal fault, (T3), Hot Spot, T> 700 °C (T3): T3 evidenced by oil carbonization, metal coloration or fusion. 

Discharges of Low energy (D1), Low Energy Arcing and Tracking: D1 such as tracking, small arcs, and uninterrupted sparking 

discharges are usually easily detectable by DGA, because gas formation is large enough. 

Discharges of High energy (D2), High Energy Arcing: D2 is evidenced by extensive carbonization, metal fusion and possible 

tripping of the equipment.  

Thermal & Electrical fault (DT) or Hot Spot, T>400°C 

Table.4. represents the percentage of gases in different zones. 

3. Concepts of SVM and its Mathematics 

The Support Vector Machine (SVM) is a supervised machine learning model that learns how to divide various groups by estab-

lishing decision boundaries and is used for classifications. It is used to provide an ideal separating hyper-plane solution for 

linearly separable and non-linearly separable datasets by maximizing the margin between the separating data. Hyperplanes 

are decision boundaries that aid in data classification. Different classifications can be given to data points on either side of the 

hyperplane as shown in the figure 2. The hyperplane's dimension is also determined by the number of features. If there are 

only two input characteristics, the hyperplane is merely a line. The hyperplane becomes a two-dimensional plane when the 

number of input features reaches three.  , m

k kT X Y k= , where kX  signifies the input vector, kY ranges -1 to 1 denotes 

the associated output values, and m denotes the total number of data patterns, and the regression approximation estimates a 

function based on a given data set. It starts with data separated by a hyperplane and then uses the kernel method to extend 

to non-linear decision boundaries. 

 
 

 

Type of Fault Zone Percentage of gases 

PD 98%CH4 100% CH4   

D1 23%C2H4 13% C2H2 100% C2H2  

D2 23% C2 H4 13% C2 H2 38% CH4 29% C2H2 

T1 4% C2H2 10% C2H4   

T2 4% C2H2 10% C2H4   

T3 15% C2H2 50% C2H4 100% C2 H4  
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Figure 2. Hyper-plane in SVM [27]. 

 

. 0kW X b+ =             (1) 

Where w denotes the weight vector and b denotes the bias term. w and b are used to define the position of the separating 
hyperplane by which it should satisfy the constraints. 

( ). 1,  1,2,...k kY W X b k m+  =  

𝑚𝑖𝑛
1

2
(∥ 𝑊 ∥)2                             (2) 

using the Lagrangian principle, the above equation is transformed to  

     ( ) ( )1( , , ) . 1
2

T T

k k kL W b W W Y W X b   = − + −
          (3)  

where αk are the Lagrange coefficients ( 0k  )  

Then the condition of optimality is applied. 

( ) ( ), , / 0,  , , / 0L W b W L W b b   =   =             (4) 

We have the following equation along with the constraint:  

                 
1

. . 0 ,  . 0
m

k k k k k

k

W X Y Y 
=

= = =            (5)                       

Hence the dual problem is expressed as the following equations  

1max . . .   for all k and 0
2k k j k j k j kX X Y Y   −    & . 0k kY =        (6) 

The ranking function ( ) class x is defined as  
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( ) ( )0 0 ( , ) ·   )i i ic sign sign Y X X blass x w x b  = = +   +                (7) 

we define that if ( ) class x  is less than 0, X  is the 1 C class= = −  ,else it is a 1 C class= =       

For the nonlinear cases, a margin parameter C is added 

1max . . .   for all k and 0
2k k j k j k j kX X Y Y C   −     & . 0k kY =        (8) 

Where C is the margin parameter. 
 

  A kernel is a method of placing a two-dimensional plane into a higher dimensional space, so that it is curved in the higher 

dimensional space. In a simple way a kernel is a function from the low dimensional space into a higher dimensional space. A 

Kernel Trick is a simple method where a non-Linear data is projected onto a higher dimension space so as to make it easier to 

classify the data where it could be linearly divided by a plane. The selection of kernel function important to the support vector 

machine. The common kernel functions are linear kernel, polynomial kernel, Gaussian radial function kernel and sigmoid kernel 

function. The kernel function is defined as ( , ) ( ). ( )k j k jK X X X X = , considered as positive kernel. 

4. Transformer Faults Classification based on SVM 

DGA training and testing data: It is based on the transformer oil's dissolved gas content data. The training data set and the 

testing data set are separated from the rest of the data. The training data set is assessed using several DGA methods, with 

judgments assigned to seven classes i.e normal, partial discharge, low energy discharge, high energy discharge, low tempera-

ture overheating, middle temperature overheating, and high temperature overheating. The transformer ratings and character-

istics used for the taking of mineral oil samples are given in the table.5.  

  Because traditional fault detection cannot achieve high diagnosis accuracies, new methods using AI approaches are being 

explored. Different forms of defects can arise in transformers, necessitating a diagnosis of the transformer's individual state. A 

binary classifier, a single SVM classifier [28] can only classify input into two unique and opposite states. This classifier can be 

used to determine if a nonzero real integer is negative or positive. A multilayer SVM is used to categorize the various errors, 

with each layer's SVM being a binary classifier. The multilayer SVM is a "one-against-all" type of model. If the binary SVM in 

the preceding layer erroneously identifies the condition, the other SVMs will categorize the condition incorrectly, and the final 

classification result will be incorrect. It's difficult to detect less severe issues inside transformers with limited data and known 

conditions, thus it's always necessary to thoroughly inspect and evaluate conditions inside transformers for alarming or failure-

prone conditions. 

 

TABLE.5. Transformer Ratings 

 

 

 

 

 

 

 

No MVA rating Voltage rating 

1 150 235/15.5 

2 4 15.5/6.8 

3 100 2255/90 

4 42.5 230/11 

5 20 90/30 
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4.1 The Functional Concept of Multi-Level SVM Classifier: 

 

 

Figure 3. Functional concept of multi-level SVM classifier 

 

 

Six SVM classifiers are utilized to identify the seven states, normal state (NS) and the six faults i.e partial discharge (PD), D1, D2, 

T1, T2, and T3. SVM1 is trained to distinguish between normal and fault states using all of the state training data shown in 

figure 3. When SVM1 receives a sample representing the normal condition as input, output is set to +1; otherwise, output is 

set to 1. The data is then passed to SVM2, which has been trained to distinguish between the discharge and overheating faults. 

The output of SVM2 is set to +1 when the input of SVM2 is a discharge fault; otherwise, it is set to 1. This information is passed 

to SVM3, which has been trained to distinguish between high-energy discharge (D2), partial discharge (PD), and low-energy 

discharge (D1) faults. The output of SVM3 is set to +1 when the input of SVM3 is a D2 fault; otherwise, it is set to 1. SVM4 is 

trained to distinguish between high temperature overheating (T3) and low and moderate temperature overheating (T1 and 

T2). When the input of SVM4 is a sample representing the T3 fault, the output of SVM5 is set to +1; otherwise −1. Then the it 

is fed to SVM5 is trained to separate the middle temperature overheating (T2) fault the low temperature overheating (T1) fault 

and when the input of SVM5 is a sample representing the T2 fault, the output of SVM5 is set to +1; otherwise −1. Then it is fed 

to SVM6 which is trained to separate the partial discharge (PD) fault from the low energy discharge (D1) fault. The output of 

SVM6 is set to +1 when the input of SVM6 is a sample indicating the D1 fault; otherwise, it is set to 1. The parameters of the 

SVM model, the activation function and C, the margin parameter, are optimized and chosen as the most appropriate parame-

ters. The SVM model is trained using the optimum parameters. The kernel functions of all six SVMs are polynomial and Gaussian. 

The SVMs are run with a large number of epochs, which is defined as training the main SVM and hidden-layer SVM on their 

respective datasets only once. The bias values of all SVMs are determined by averaging over the mistakes, and this is employed 

with the gradient ascent technique, which uses a limited learning rate and a fixed number of iterations. The matrix condition 

output of SVMS is given in table.6. 

 

 

 



GVSSN S. Sarma et al.  
 

 

ISSN (Online) : 2582-7006       
                                                          

9 
Journal of Informatics Electrical and Electronics 

Engineering (JIEEE) 
A2Z Journals  

 

 

TABLE 6. The matrix condition output of SVMS 

Fault condition SVM1 SVM2 SVM3 SVM4 SVM5 SVM6 

Norma state +1      

PD -1 +1 -1   -1 

D1 -1 +1 -1   +1 

D2 -1 +1 +1    

T1 -1 -1  -1 -1  

T2 -1 -1  -1 +1  

T3 -1 -1  +1   

 

The Algorithm for the multi-layer SVM algorithm:  

• Initialize output SVM  

• Initialize hidden-layer SVMs  

• Compute kernel matrix for hidden-layer SVMs  

• Train hidden layer SVMs on perturbed dataset  

• repeat  

o Compute kernel matrix for output-layer SVM  

o Train output-layer SVM  

o Use backpropagation to create training sets for hidden-layer SVMs  

o Train hidden layer SVMs  

• until maximum number of epochs is reached 

 
For classification, the training technique, and the selection of SVM parameters for training are critical. The process of optimizing 
SVM parameters with the cross-validation approach is depicted in the flow diagram given in the figure 4. 

 
 

 
 

Figure 4. Functional concept of multi-level SVM classifier 
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Data generation: The data is generated by considering both a normal and a failed state mode. 

• Load the 192-sample training data as training data. 

• Polynomial and Gaussian kernel functions, with Kernel=1 and C=1 

• The SVM training data set with the SVM class function. 

• Display of the results as well as the most important support vectors. 

• Determine the value of the hyper-parameter 

• Using a logarithmic scale spanning from 1 to 1000, determine the C parameter. 

• The cross-validation approach is used to select the C and parameters. 

• Using the suitable values for these parameters, the SVMs are trained and tested. 

5. Results and Discussions 

The classification of SVM errors is done using DGA algorithms as a gas signature. Statistical diagnosis results of the ratio meth-
ods is shown given table 7. 
 

Table 7. Statistical diagnosis results of the ratio methods 
 

Type Samples No. of correct diagnosis 

Doernenburg Roger IEC 

T1 20 10 7 0 

T2 25 15 10 15 

PD 9 4 3 2 

D1 28 10 15 13 

D2 45 37 32 42 

NF 65 43 35 55 

Total 192 119 102 127 

 

5.1. SVM key gas 

The defects are classified using the gas as input data. The words false alarm and non-detection rate are used to examine it. 

Polynomial and Gaussian kernels are put to the test, shown in table.8. 

TABLE 8. The matrix condition output of SVMS 

 

 
 
 
 

The Gaussian kernel function is more efficient for system problem diagnostics, however it does not produce outstanding re-

sults. As a result, another method, SVM ratios, is proposed. The flaws in this method are dependent on the ratios that serve as 

input data. The test data is given back into the SVM to see if it correctly classifies and return results. For the two kernel functions 

polynomial and Gaussian kernels, the table.9 shows the results of the same false alarm rate and non-detection rate. 

 

SVM kernel function False alarm rate (%) Non-detection rate (%) 

Polynomial 0 45 (11/25) 

Gaussian 0 16.7 (6/25) 
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TABLE 9. Results of the false alarm rate and non-detection rate 

SVM kernel function False alarm rate (%) Non-detection rate (%) 

Polynomial 0 16.7 (6/25) 

Gaussian 0 17.5 (7/30) 

 

The Gaussian kernel function is found to be a more efficient approach for defect diagnostics. 

5.2. Graphical representation of SVM 

The defects are categorized using the same Polynomial and Gaussian kernel functions as input and the same graphical repre-

sentation. The classification performance of the SVM graphical representation method is shown in the table.10. 

 

TABLE 10. SVM graphical representation method 

SVM kernel function False alarm rate (%) Non-detection rate (%) 

Polynomial 0 23.3 (7/30) 

Gaussian 0 16.7 (6/25) 

 

In comparison to the Polynomial kernel function, the Gaussian kernel function provided a good diagnosis. The SVM combina-

tion method classification performance is given in the table.11. 

 

TABLE 11. SVM combination method classification performance 

SVM kernel function False alarm rate (%) Non-detection rate (%) 

Polynomial 0 16.7 (6/25) 

Gaussian 0 11(2/30) 

 

5.3.  Analysis on SVM Classification 

The Gaussian kernel appears to be producing good results based on the four inputs of the data classified by the SVM. For the 

gas analysis approach, the false alarm rate and non-detection rate of four input data types are used. We analyse the false alarm 

rate and non-detection rate of four input data types to determine the most significant gas analysis method. The real result 

shows that the classification accuracies obtained by combining ratios and graphical representation methods are higher than 

those produced by SVM for gas signature classification. The performance of the multilayer SVM is compared to AI methods 

such as fuzzy logic and MLP. Though the MLP has the advantage of a quick learning process and no iteration for updating 

weights, it requires a significant quantity of training data and requires adjusting the hidden activation function's parameters. 

The Fuzzy logic method requires linguistic variables, membership functions for each gas signature with “low,” “medium,” and 

“high” descriptions, and an inference rule basis. Finally, the SVM technique is used to classify errors using a combination of 

ratios and graphical representation. Gaussian, trapezoidal, and triangle functions are the most utilized membership functions 
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to convert judgments into numerical expressions. MLP is based on a four-layer design with six input nodes, seven output nodes, 

and 19 hidden nodes. 6 input variables with 3 membership functions each, 7 output variables with 3 membership functions, 

and 353 inference rules make up the Fuzzy method. The results demonstrate that the multilevel SVM technique provides a 

reliable and accurate fault diagnosis transformer. Comparison between various DGA methods with false alarm and non-detec-

tion rate is given in table 12.  

  It can be observed that the IEC ratio method gives correct diagnosis and finds No Fault (NF) cases but T1 fault cases of cannot 

be detected. The other two methods Doernenburg ratio and the Roger ratio methods are able to detect the T1 cases. Out of 

the Doernenburg ratio and the Roger ratio methods, the Roger ratio method finds good number of discharge faults, and the 

Doernenburg ratio method is the best to detect the thermal faults. 

 
 

TABLE 12. Comparison between various DGA methods 

DGA methods False alarm rate (%) Non-detection rate (%) 

Key gas 0 16.7(6/25) 

Ratios method 0 11(2/30) 

Graphical method 0 16.7 (6/25) 

Combination of ratios and graphical representation 0 11(2/30) 

 

  The test of results for the AI-based methods, based on 45 total sets of testing data shown in the in table 13 and based on 

the results the diagnosis accuracies of these methods are compared. The accuracies from the traditional ratio methods are 

based on all 192 datasets, whereas the accuracies from the AI-based methods are only based on 88 testing datasets.  

 

Table 13. Diagnosis results from ANN, SVM and MLSVM methods 

Method applied Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 Diagnosis accuracy 

MLSVM 64 65 65 69 71 66.8 

SVM 55 64 59 68 59 61 

ANN 58 48 64 58 66 58.8 

 

Comparison between Multi-layer SVM model and other methods is shown in figure 5. The comparison results given table 13 

shows that the multi-layer SVM model can diagnose an average of 66.8 cases, the SVM models can correctly identify an average 

of 61 cases and ANN method identify 58.8 cases and this comparison confirms that of the multi-layer SVM is superior to all 

methods considered and this explains the effectiveness of the Multilevel SVM for the fault diagnosis of transformers. 
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                        Figure 5. Comparison Between Multi-layer SVM Model and other methods 

 

    The procedure followed for the comparison is as follows. Randomly selected the required number of datasets from the 

180 samples to develop models for the ANN method, the SVM method, and the proposed Multilayer SVM    method. The 

remaining samples are the testing sets. Randomly selected 10 datasets from the testing sets are used in this case study. Ob-

tained the diagnosis results from the models developed in the first step. Fed the 10 datasets into the ratio method to get 

diagnosis results. Summarized and compared the results. Comparison of diagnosis results is shown in table 14. Selected gas 

concentration is in ppm.  
 

Table 14. Comparison of diagnosis results 

S. 
No. 

Source H2 CO CH4 C2H4 C2H6 C2H2 

1 Duval 0.05 3900 18900 540 410 330 

2 Duval 960 15800 4000 1560 1290 6 

4 Duval 1100 0.05 1600 2010 221 26 

5 Duval 3910 1800 4290 6040 626 1230 

6 Duval 92600 6400 10200 0.05 0.05 0.05 

7 Duval 26788 704 18342 27 2111 0.05 

8 Duval 60 780 10 4 4 4 

9 Duval 6870 29 1028 900 79 5500 

10 Duval 5100 117 1430 1140 0.05 1010 
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Table 15. Diagnosis results from the different methods for the selected data 

 

  Form the table 15, it should be noted that as in case 6 is an example, although the Doernenburg ratio method is not able 

detect the PD cases, the MLSVM can identify PD. Similar to the cases 1, 3 and 8 accurately, while the SVM model failed to do 

so, which shows the effectiveness of the MLSVM. 

6. Conclusion 

The MLSVM technique is used and compared with basic SVM and conventional IEC methods in this paper for fault classification 

in transformers utilizing dissolved gas measurements. The key gas, ratios, graphical representation, and combination ratios and 

graphical representation approach are the DGA methodologies investigated. Polynomial and Gaussian functions are used to 

examine the effectiveness of SVM diagnosis. The real data sets are utilized to test the DGA algorithms' capability in forecasting 

transformer oil. According to test results, the combination, ratios and graphical representation approach is more suitable as a 

gas signature and the MLSVM with the Gaussian function performs better in diagnosis accuracy than the other kernel functions. 

Due to their extensive study capabilities, the accuracy of multi-layer SVM for fault identification is comparable to that of con-

ventional approaches. It can be observed that conventional ratio methods are not able to detect the internal faults and hence 

given Not Detected (ND) and some cases which cannot be diagnosed are mentioned as No Fault (NF) cases. It  is observed 

that the ratios methods are inferior to the MLSVM method. The MLSVM outperforms previous AI approaches when it comes 

to fault diagnostics. The MLSVM method can be used to diagnose incipient defects in transformers in real time. The results show 

that the MLSVM method has the ability to anticipate the DGA method in transformer oil. The SVM method has a greater precision 

but a poorer recall over positive classes, whereas the MLP approach has a better classification performance, correctly predicting 

two of the four failures that happened within the chosen period. Future work will focus on improving the overall performance 

metric by incorporating a more robust data set as well as a different set of features to improve and lessen the potential for bias 

in the results. It will be highly promising in the future to develop new intelligent comprehensive fault diagnostic systems by 

adding new ML theories and frameworks, as well as a new ML based on multi-layer ANN to transformer fault diagnosis based on 

DGA. In some circumstances, such systems can detect and discard bad data automatically, and they have better real-time capa-

bilities and self-adaptation. 

S. No. Actual fault Doernenburg Rogers IEC ANN SVM MLSVM 

1 T1 T1&T2 ND ND NF T2 T1 

2 T1 T1&T2 T1 T1 T1 T1 T1 

3 T1 T1&T2 T1 ND T1 NF T1 

4 T2 T1&T2 T2 T2 T2 T2 T2 

5 T2 T1&T2 ND ND D2 T2 T2 

6 PD ND ND ND PD PD PD 

7 PD ND NF ND NF T1 T1 

8 D1 ND ND ND D1 D1 D1 

9 D1 D1&D2 D1 D1 D2 D1 D1 

10 D2 D1&D2 D2 D2 T2 D2 D2 
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