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  Abstract 

Microgrid concept is initiated due to increasing involvement of distributed generation 
resources with the utility grid. Microgrid provide reliable and sustainable power but the 
protection of microgrid become challenging due to bidirectional power flow, dual mode 
of operation (grid connected and islanded mode). Faults in the microgrid reduce its sta-
bility and efficiency. Identification, classification, and location of faults are critical for 
rapid restoration and microgrid protection. This research proposes a neural network-
based intelligent particle filter for microgrid fault detection and classification. Even with 
low fault current, which is typical of inverter-based DGs, the suggested method seeks to 
precisely identify fault kinds, locations, and directions. The features are extracted from 
data using S-Transform, then extracted features are estimated using particle filter. A 
neural network is then used for classification and finalization of location. The proposed 
scheme provides extremely precise fault detection, ensuring that the classification and 
location of the fault are promptly identified for effective protection and service restora-
tion. 
 

Keywords 
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1. Introduction 

With the continuous increasing demand of electrical energy and increasing concern of environmental degradation, depletion 
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of fossil fuels and rising fossil fuels price, conventional resources considered to be replaced by renewable resources [1]. The 

rising use of renewable energy sources (RES), like solar energy, biomass energy, wind farms has allowed formation of microgrid 

[2]. Microgrid can function both independently and in connection with the main power grid. To improve dependability, resili-

ence, and efficiency on a smaller scale, it includes demand management, storage, and renewable energy sources [3]. Growing 

DG penetration in the network brings new challenges for the protection of microgrid in case of fault detection and fault local-

ization. 

  As integration of DG changed the power flow of distribution network from unidirectional to bidirectional. Faults in microgrid 

affect the stability and reliability of the system [4]. Protection challenges faced by microgrid are fault detection, fault localiza-

tion, fault classification, coordination between protection devices, detecting between the grid connected mode and island 

mode, high impedance fault etc. These challenges occur due to the bidirectional flow of electric current due to DGs integration 

in the grid and topological structure like radial and meshed of microgrid. Traditional fault technique is not suitable for microgrid 

due their variable fault current. Due to this soft computing techniques like fuzzy logic, neural networks and evolutionary algo-

rithm gain popularity [5]. 

These technologies are necessary to guarantee microgrid stability and dependability, particularly when there are complex fault 

scenarios present. A variety of studies have investigated a range of methods for microgrid fault diagnosis and protection, in-

cluding wavelet transformations, data mining, machine learning, and hybrid approaches. In [6] the author examines fault pro-

tection concerns based on the microgrid's integration of distributed generators based on inverters. Two statistical classifiers—

Naïve Bayes and decision trees—are compared by the author. In [7] the author employed a deep neural network based on 

discreate wavelet transform to identify and classify faults in hybrid energy-based multi-area grid-connected microgrid clusters.  

 In [8] author proposed a combined machine learning and SP based technique. The result shows that the algorithm can provide 

efficient protection measure for microgrid.  

In [9] the author used an approach based on discreate wavelet transform and artificial neural network-based methodology for 

the detection and localization of the faults in the distributed network of AC microgrid. In [10] Kalman filter based scheme is 

proposed for microgrid protection. In this one end current signal for the detection and classification of faults. Microgrid fault 

detection has been effectively accomplished through the use of data mining techniques including random forests, support 

vector machines (SVM), and decision trees. The efficiency of ensemble learning techniques in fault identification was demon-

strated by the author, who investigated gradient boosting trees for fault diagnosis in low-voltage distribution grids [11]. In this 

study an intelligent data mining-based approach for fault detection in which the first Hilbert transform is used to extract the 

features from current and voltage signals. AdaBoost classifier for fault classification. The results obtained show 99% accuracy 

for fault classification [12]. In this study convolutional neural networks (CNNs) based approach is used for features extraction 

and classification of fault type in microgrids. The proposed technique shows the accuracy of 99% [13]. 

  The comparison results show that suggested schemes outperformed the existing schemes [13]. A transient wavelet energy-

based protection strategy was developed specifically for inverter-dominated microgrids to ensure accurate fault identification 

and classification under a range of operating scenarios. This technique requires lower sampling rate and low-cost communica-

tions [14]. This study demonstrated the performance of a time-varying Kalman filtering technique for detection and classifica-

tion of high-impedance faults in renewable energy-based distribution network [15]. To detect the accurate and early short 

circuit fault area in the microgrid wavelet transform based algorithm is used in this study. The simulation shows that the pro-

posed technique can detect the short circuit faults faster and more accurately in microgrid.[16].  

  A alternative protection technique that employed a temporal matrix z-score vector was able to distinguish between fault 

and normal conditions in microgrids [17]. This study suggests an ensemble wavelet-based approach for detecting AC microgrid 

faults. Wavelet transformation (WT) is used in microgrids with distributed energy resources (DERs) to extract features from 

data. These features are subsequently processed by ensemble machine learning models to improve the precision of fault [18]. 
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A dual filtering approach is introduced to enhance security and safety in microgrids with multiple energy sources. This method 

improves the functionality of fault detection systems and reduces false alarms in complex microgrid settings [19]. In this study, 

an intelligent fault detection system for microgrids is developed using machine learning methods. The system's real-time fault 

identification and classification ensures the stability of the microgrid [20]. In this study, faults are detected by combining the 

Hilbert-Huang transform (HHT) with deep neural networks (DNNs). While HHT gathers time-frequency information from sig-

nals, DNNs improve the accuracy of fault detection in microgrids [21].  

  Identification, categorization, and location of microgrid faults have significantly improved with the protection strategies de-

scribed above. However, they indicate limits in terms of scalability, real-time performance, and flexibility when utilized in dy-

namic and challenging microgrid scenarios. This paper presents an intelligent Particle Filter with Neural Network approach to 

overcome these difficulties. The suggested approach delivers reliable fault detection, identification and classification by com-

bining the state estimation capabilities of particle filters with the fault classification precision of neural networks. This proposed 

technique is ideal for inverter-dominated and renewable energy-based microgrids because it enhances real-time performance 

while simultaneously improving accuracy and durability. The paper is arranged as follows. IEC microgrid test system is explained 

in section II. The introduction of the protection scheme and mathematical formulation is explained in section III. The method-

ology of the proposed scheme is explained in section IV. Simulation results of the proposed scheme are explained in section V. 

The last section explains the conclusion 

2. System IEC Test System 

The microgrid test system used in MATLAB/SIMULINK is shown in figure 1. The microgrid distributed network is connected with 

the main grid at the PCC by a circuit breaker which changes the operation between grid connected mode and island mode. To 

test the performance of proposed scheme on various types of DGs in microgrid. In this, four DGs which connect using a step-

up transformer in the microgrid. The DG1 and DG2 are wind type DGs and the DG3 and DG4 are photovoltaic type DGs. The 

CB1 and CB2 have the ability to switch between a radial and meshed microgrid. There are six loads connected in microgrid. 

Each load is connected at each bus. The total loading considered in this paper is taken as 22 MW, 10MVAR. The frequency of 

the system is set to 50 Hz. The sampling time used is 5e-5. The base voltage is taken as 13 kV and base power is taken as 45 

MVA in the system. The other parameters of the microgrid are taken from [22] [23]. 

3. Proposed Scheme 

3.1. S-Transform 

The S-transform is a time-frequency analysis method that provides information on the frequency content of non-stationary 

signals while preserving temporal localization. It is simply an expansion of the Short-Time Fourier Transform (STFT) that inte-

grates wavelet analysis to address some of its drawbacks. Stockwell et al. (1996) invented the S-transform, which is very useful 

for evaluating transient or time-varying data, making it ideal for detecting power system faults [24]. 

The S-Transform (ST) is an effective time-frequency analysis technique that combines features of the Short-Time Fourier Trans-

form (STFT) and the Wavelet Transform. It is especially effective for studying transient signals, such as those generated during 

faults [25]. 

                               𝑆𝑇𝐹𝑇(𝜏, 𝑡) = ∫ 𝑥(𝑡)
∞

−∞
𝑤(𝜏 − 𝑡, 𝑓)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡                              (1) 

Where, x(t) is the given signal and w (t, f) is the window function. The position of gaussian window is set by t (denoting time) 

and f(frequency).  

                                      𝑤(𝑡, 𝑓) =
|𝑓|

√2𝜋
𝑒

−𝑡2𝑓2

2                                                       (2) 
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The gaussian window function ensures that lower frequencies have bigger time windows (excellent frequency resolution) while 

higher frequencies have smaller windows (good time resolution). This makes the S-Transform adaptable, overcoming the fixed-

resolution constraint of STFT. By replacing the w(t,f) with the window function with the gaussian function the above S transform 

is derived [24], [25], [26]. 

The equation can be written as.  

                            𝑆𝑇(𝜏, 𝑓) =  ∫ 𝑥(𝑡)
|𝑓|

√2𝜋
𝑒

−𝑡2𝑓2

2  𝑒−2𝜋𝑖𝑓𝑡  𝑑𝑡
∞

−∞
                                               (3) 

For discrete S-transform, x[kt] is the discreate form of x(t) where k = 0,1,2,……,N-1 with sampling interval T. 

The discreate Fourier transform of x[kT] is 

                             𝑋 [
𝑚

𝑁𝑇
] =  

1

𝑁
 ∑ 𝑥[𝑘𝑇]𝑁−1

𝑘=0 𝑒
𝑖2𝜋𝑚𝑘

𝑁                                                         (4) 

Where m = 0,1, 2…., N-1, and N denotes the number of samples. 

The discreate S- transform of x[kt] 

                             𝑆 [𝑗𝑇,
𝑛

𝑁𝑇
] = ∑ 𝑋 [

𝑚+𝑛

𝑁𝑇
] 𝑒

[
−2𝜋2𝑚2

𝑛2 ] 𝑒
[
2𝜋𝑚𝑗

𝑁𝑇 ]𝑁

2
−1

𝑚=
−𝑁

2

                                           (5) 

Where j,m,n = 0,1, 2..., N-1. Making τ = jT and f= n/NT. 

The discrete inverse of S transformation can be obtained by Feature Extraction 

a. Mean  

The RMS value of signal x[n] over N sample. 

                            𝑅𝑀𝑆 =  √
1

𝑁
 ∑ 𝑥𝑁

𝑛=1 [𝑛]2                                                (6) 

Where, 

X[n] represents the discrete time signal, and N represents total number of samples. 

b. Total Harmonic Distortion (THD) 

                             𝑇𝐻𝐷 =  
√∑ 𝑋ℎ

2𝐻
ℎ=2

𝑋𝑓
                                                     (7) 

Where, xf represents amplitude of the fundamental frequency and 𝑋ℎ is amplitude of h th harmonic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The diagram of IEC microgrid test system. 
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c. Energy from S-transform 

The energy from S- Transform S(t, f) of a signal x[n] is 

                            𝐸 = ∑ ∑ |𝑆(𝜏, 𝑓)|2
𝑓𝜏                                                    (8) 

d. The entropy is an aspect of the frequency distribution's spread. The equation is given by 

                                𝐻 = − ∑ 𝑃𝑖  log(𝑃𝑖+∈)𝑖                                                             (9) 

Where, Pi represents normalized spectral energy distribution and € is small constant to prevent log (0). 

                                     𝑃𝑖 =
|𝑆(𝜏𝑖,𝑓𝑖)|

∑ 𝑆(𝜏,𝑓)
                                                   (10) 

2.2. Particle Filter for State Estimation 

The Bayesian estimate technique known as the Particle Filter (PF) is designed for nonlinear and non-Gaussian systems. Based 

on observable measurements 𝑧𝑡, it employs a sequence of particles to predict the system state 𝑥𝑡 at a certain time t[15]. 

a. Initialization 

To represent the previous probability distribution p(x0), a collection of n particles is created at the first-time step, at time t=0. 

Each particle 𝑥0
𝑖  sign an equal weight 

                           𝑥0
𝑖 ~  p(𝑥0),  𝑤0

𝑖 =
1

𝑁
  , 𝑖 = 1,2,3, … 𝑁                                                   (11) 

b. Prediction 

The particles are propagated through the state transition model to predict their next state. 

                               𝑥𝑡
𝑖 = 𝑓(𝑥𝑡−1

𝑖 ) +  𝑣𝑡
𝑖                                                             (12) 

𝑓(𝑥𝑡−1) represents nonlinear state transition function and 𝑣𝑡
(𝑖)

 represents the process noise sample from a known distribu-

tion. 

c.  Updates and Normalization 

The probability of the observation 𝑧𝑡 is used to update the particle weights. 

                              𝑤𝑡
𝑖 ∝  𝑤𝑡−1

𝑖 ∙ 𝑝(𝑧𝑡|𝑥𝑡
𝑖)                                                           (13) 

Normalize the weights 

                                𝑤𝑡
𝑖 =  

𝑤𝑡
𝑖

∑ 𝑤𝑡
𝑖𝑁

𝑗=1

                                                                 (14) 

d.  Resampling 

To prevent particle degradation, resample the particles according to their weights. Higher-weight particles are replicated, and 

lower-weighted particles are eliminated. 

2.3. Pattern Recognition Neural Network for Fault Classification 

The PNN classifies the fault type on the basis of estimated data.  

a. Input layer  

The input layer takes in the estimated data. 

                                𝐹𝑡 = [𝑓1, 𝑓2, … . , 𝑓𝑛 ]                                               (15) 

b. Radial Basis Function Layer 

Using a Gaussian kernel, the RBF layer determines how similar the input features and training samples are:  

                                  𝐺𝑖(𝐹𝑡) = 𝑒𝑥𝑝 (−
||𝐹𝑡−𝜇𝑖||2

2𝜎2 )                                           (16) 
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Where n is no. of features, 𝝁𝒊 is mean of ith class, 𝝈 is smoothing parameters that control speed of gaussian function. 

c. Summation Layer and decision layer 

The RBF layer's outputs are added up by the summation layer for every class Ck.  

                               𝑃(𝐶𝑘|𝐹𝑡) =  
∑ 𝐺𝑖(𝐹𝑡)𝑖∈𝐶𝑘

∑ 𝐺𝑗(𝐹𝑡)𝑀
𝑗=1

                                                         (17) 

The decision layer assigns the fault type C ̂ to the class with the most likely posterior probability.  

                                      �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃(𝐶𝑘|𝐹𝑡)                                                    (18) 

4. Methodology of Proposed Scheme 

An Intelligent Particle Filter with Neural Network (IPFNN) are combined in the proposed methodology for fault detection, iden-

tification and location in microgrid. For accurately detecting the type and location of faults in the lines estimate the extracted 

features. This proposed method is intended to improve fault detection speed and reliability in contemporary power grid, es-

pecially in complex systems like microgrids that combine distributed generation with grid-connected operation. 

4.1. S Transform features extraction 

S- Transform scheme is used to extract the features for fault detection, classification and location. In the proposed scheme we 

extract the features like mean, entropy, standard deviation, energy and peak values. By evaluating time-frequency character-

istics, it enables accurate fault localization, classification and detection in a microgrid. Three-phase voltage (Vabc) and current 

(Iabc) data are taken from 10 relays signals from the test model. The S-Matrix, a time-frequency representation produced by 

the transformation can be used to extract a number of features. Amplitude-based features including the signal total energy, 

amplitude mean and standard deviation, and magnitude fluctuations at various frequencies are among the features that can 

be extracted from the S-Transform. Normal and defective circumstances can be distinguished using frequency-based criteria 

such as energy distribution across various frequency bands and dominating frequency components. Unbalanced faults can be 

found using phase-based characteristics including inter-phase discrepancies and phase angle variations. Further information 

on fault characteristics can be obtained by measuring the signal's symmetry and unpredictability using statistical parameters 

like kurtosis, skewness, and entropy. 

4.2. State Estimation Using Particle Filter 

After the data has been pre-processed, the state estimate comes next. An Intelligent Particle Filter, which combines the bene-

fits of particle filtering with state-space models, is used to evaluate the system's status in unidentified conditions. For handling 

the intricacy and non-linearities inherent in power system dynamics, especially in the event of a malfunction, the particle filter 

is ideal. At the beginning of the process, a set of particles is initialized, each of which represents a possible state of the system. 

These particles travel across the system's dynamic model, which takes into account the network design and the fault conditions. 

At each time step, the particles are updated based on the likelihood of the observed measurements (voltage and current) given 

the predicted state. This probabilistic function helps improve the particle weights by focusing on the most likely states. 

Resampling is the following step, when low-weight particles are removed, and new particles are made using the higher-

weighted ones as a starting point. Through this recursive process, the particle filter may constantly improve the state estimate, 

providing a more accurate representation of the system's condition over time. 

4.3. Fault Detection and Classification 
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A Neural Network (NN) is used in the fault classification process to accurately identify the type of fault from the pre-processed 

voltage and current data. As a tool for pattern recognition, the NN is trained to identify and categorize faults by examining the 

distinct features of the input signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow chart of Proposed Scheme. 

  To capture the complex correlations between input characteristics, many layers of non-linear activation functions—such as 

ReLU (Rectified Linear Unit)—are employed. The neural network can identify faults in real time after it has been trained. The 

NN receives the extracted features when a fault is identified and gives the fault type and fault location with the highest prob-

ability. For the protective system to react correctly, this classification offers key data. To train the PNN network, we generate 

the data from the IEC microgrid in different fault and no-fault cases, different operating scenarios, network configurations, 

fault location. Fig. 2 shows the workflow of the proposed scheme. 

5. Simulation Results 

After the text edit has been completed, the paper is ready for the template. Duplicate the template file by using the Save As 

command and use the naming convention prescribed by your journal for the name of your paper. In this newly created file, 

highlight all of the contents and import your prepared text file. You are now ready to style your paper. 

5.1. Fault data generation 

The proposed fault detection and classification method's efficacy was evaluated using simulations on a microgrid model that 
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included ten protective relays, five transmission lines (20 km long), a main grid connection, six buses, four distributed genera-

tors (three solar-based and one wind turbine-based), and four distributed generators. MATLAB/Simulink2024b simulation was 

used to conduct the simulation, and multiple fault scenarios—such as grid-connected, island modes, only grid connected mode, 

partially DG mode were introduced under varied operating conditions. 

 

Name Modes/events No. 

Operating condi-
tion 

Grid connected/islanded/only 
grid/partially DG connected 

4 

Network topolo-
gies 

Loop/ Radial 2 

Fault type AG,BG,CG,ABG,BCG,CAG,AB,BC,CA,ABC 10 

Fault resistance 0.01,1,10,100 4 

Lines L1,L2,L3,L4,L5 5 

 

Table 1. Different fault Scenarios. 

  

 In order to ensure high-resolution transient analysis, the dataset included three-phase voltage (Vabc) and current (Iabc) signals 

from ten relays, sampled at 5e-5 seconds. Table 1 shows the different fault scenarios used in this paper. 

5.2. Identify the Headings 

An Intelligent Particle Filter with Neural Network (IPFNN) model was trained using the collected characteristics to detect faults, 

classify the fault. In five fault locations, the model was tested on ten distinct fault types (AG, BG, CG, AB, BC, CA, ABG, BCG, 

CAG, and ABC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Confusion matrix for fault type. 
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Figure 4. Confusion matrix for fault phase identification. 

  The estimated data is used to train the neural network. The training was performed using the Levenberg -Marquardt 

optimization with data samples. Fig.3 shows A confusion matrix is an assessment of efficiency for determining the accuracy 

of a fault type classification. It is a table that compares real fault kinds to anticipated fault types and displays the number 

of correct and wrong classifications. Each error type is represented by a matrix including True Positives (TP), True Negative s 

(TN), False Positives (FP), and False Negatives (FN). The column represents True fault type and rows represent predicted 

fault type. The model's performance in detecting and categorizing defects in a microgrid may be evaluated by using im-

portant metrics such as accuracy and precision. The proposed scheme achieved 99.9 % accuracy for fault type classifica-

tion. The IPFNN performance for phase identification is shown in fig.4. The proposed scheme shows 99% accuracy for the 

fault phase identification. 

5.3. Fault Location detection 

The proposed scheme for fault location in figure 5 shows the accuracy of 98.7%. Given that most of the predictions match the 

actual fault locations, the confusion matrix has high classification accuracy. Minor misclassifications point to possible areas for 

development, such improving feature extraction, improving the classification method, or adding more fault features to help 

the model distinguish between fault locations that are closely related. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Confusion matrix for fault location. 

 
 

 



Archana and S.K. Sharma 

 

 

ISSN (Online) : 2582-7006   
  

10 
Journal of Informatics Electrical and Electronics 

Engineering (JIEEE) 
A2Z Journals 

 

 

 
System Configuration 

Existing Protection Scheme 

[18] [21] [20] Proposed 

Operating Mode 

(grid connected/islanded) 
both both both both 

Topology (radial or mesh) both both both both 

Accuracy for fault location 99% Approx100% 99.9% 99.6% 

Methods WT HHT PF IPFNN 

 

Table 2. Comparative analysis of proposed schemes with previously used schemes. 

6. Conclusion 

Using an intelligent Particle Filter with Neural Network technique, this work proposes an intelligent framework for microgrid 

detection, location and classification of faults. To improve accuracy and reliability of fault detection, the study combines S-

Transform-based feature extraction, particle filter-based feature estimation, and a neural network classifier. To evaluate the 

efficiency of the proposed scheme, an Intelligent Particle Filter with Neural Network (IPFNN) fault detection analysis was exe-

cuted. The obtained result shows that the proposed technique achieved the accuracy of 99.9% for fault type and fault location 

accuracy of 98.7% with different fault scenarios. Hence ensure safe and efficient operation of microgrid is obtained. 
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