
 Journal of Informatics
 Electrical and Electronics Engineering, 2022,
 Vol. 03, Iss. 01, S. No. 007, pp. 1-17
 ISSN (Online): 2582-7006

ISSN (Online): 2582-7006

1
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

A Novel Optimized Travel Planner

Rahul Srivastava1, Pawan Singh2

1,2Department of Computer Science Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Lucknow
Campus, India
1rahul.srivastava12134@gmail.com, 2pawansingh51279@gmail.com

How to cite this paper: Author 1, P. Singh, “A
Novel Optimized Travel Planner,” Journal of
Informatics Electrical and Electronics
Engineering (JIEEE), Vol. 03, Iss. 01, S No. 007,

pp. 1–17, 2022.

http://doi.org/10.54060/JIEEE/003.01.007

Received: 05/04/2022
Accepted: 24/04/2022
Published: 25/04/2022

Copyright © 2022 The Author(s).
This work is licensed under the Creative
Commons Attribution International License
(CC BY 4.0).
http://creativecommons.org/licenses/by/4.0
/

Abstract

In 1959, Dijkstra announced a method for determining the shortest path between two
nodes in a network. This algorithm has received much attention because it can deal with
various real-life problems. The algorithm is a greedy type. Other types of algorithms are
also created and compared. Application-related changes are made to the original
algorithm. The time complexity of the algorithm increases at the expense of space
complexity. Space is more complex with modern hardware, so that you can implement
such an algorithm.

Keywords

Dijkstra’s algorithm, shortest path, graph, node, edge, time complexity, space
complexity.

1. Introduction

Dijkstra‟s Algorithm (DA) gets a wide attention as it solves an important problem of graph theory, of finding out the “Shortest

Path (SP)”. For a graph with each edge having a weight or path length the algorithm determines the SP between two selected

vertices. In street network applications, city crises take care of driving guidance systems, where the best route must be

established, and shortest route difficulties are inevitable. Because the traffic situation in a city varies from time to time & there

are frequently many requests at any given time, it is necessary to find a solution immediately. As a result, the algo's efficiency

is critical [1, 3, & 5]. Preprocessing, which computes results before demanding, is a technique used. These findings are stored

in memory & they can be used immediately as when a new query is received. This may not be possible if the devices have

limited memory. The research will only work on single-source shortest route issues, analyzing several algorithms such as

Dijkstra's shortest route algo, Restricted search method, and A* algo to draw relevant generalizations. To verify the three

algorithms, a JavaScript application was constructed. The three ways were put to the test and visibly demonstrated.

To better understand the algorithm, we need to look at the specific graph.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

2
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Figure 1. (a) An example graph. (b) Execution steps of Dijkstra's Algorithm [1]

The goal is to find the SP between nodes d and j. The number of iterations is shown in the first row of the table in fig. 1b.

All distances from source d to nodes other than d are considered infinite for the unit or 0th iteration. The sign here stands for

"unknown. "In computation, a considerable number is put in place of infinity to refuse the unknown. The path length from

node d to node d is 0. The first column of the table contains these values.

The distances between the source and nearby nodes replace the initial infinite value in the first iteration. The nearby nodes

in this example are "a" and "h." As seen in picture 1, the distance from node d to h is 1, and from the node a to an is 4. The

active vertex in the second iteration is h since it has the smallest distance from d.

The total of the distances from d to h and h to nearby nodes is now calculated, and the direct path, if any, is compared. The

third column has a smaller value. For example, the distance from d to e is calculated as the distance from d to h (1) + the

distance from h to e. (5). As a result, the total distance in the 5th row and 3rd column of the table is 6. The distance between

the active vertices h to a is the sum of the lengths d to h (1) and h to a (10) 11, or the straight path distance is 4. The smaller

value, 4, is in the table's first row and first column. Since the third iteration, a has become the active vertex. The last path has

been removed due to the d, 2 straight routes of active vertex hits. As a result, the absolute path is determined as d->a->e with

path length 6. The iteration stops when the destination node j is an active vertex. Then the final route becomes d->a->e->f->i-

> j with SP length 11.

Determining SP is a fundamental task that needs to be completed from time to time in different places. This approach can

determine the shortest distance between two points [2]. This figure shows all road or rail connections at accessible train

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

3
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

stations. If you want to handle a variable number of edges, you need to change the method. Some roads are closed due to

repair work or bad weather.

If the length of the path can represent something else, the algorithm finds a greater use. If you can divide your project into

many different tasks, you can use the nodes that represent the tasks to create the chart. The path length is replaced with the

task execution time. In this situation, DA finds the fastest completion time for the project. Application-specific changes may be

required. If a certain path length becomes negative, DA will stop functioning. Algorithms have been presented to address this

type of problem [1]. As technology evolves, algorithms discover new uses. With the advancement of routing techniques in

computer and mobile networks, algorithms are receiving a lot of attention. Despite the fact that the method was proposed

many years ago [3,] several new proposals to improve it have just been presented. Various types of data structures are used

to speed up execution.

More RAM is reserved to hold intermediate results that can be reused to reduce computation time. As a result, the time

complexity is increased along with space complexity. This is a typical pattern in algorithm development. There may be greater

space complexity as modern hardware can provide more significant memory. Another trend is to divide networks into subnets

and apply algorithms to them. Since the time complexity is proportional to the square of the number of nodes, the time

complexity improves significantly as the number of nodes is reduced. Other networks for which DA is improved, operating

more efficiently and reducing time complexity have been noted. The DA algorithm is a greedy algorithm that seeks the best

instant result. Other methods were also tested, and the results were compared. There are several proposed algorithms for SP,

and their number is proliferating. Several algorithms can be used for SP compared in this article.

For real road networks, determination of SP from place to place is extremely important. Zhan [4] compared 15 algorithms for

this application. Following table 1 lists all these algorithms.

Table 1. 15 algorithms for real road networks, determination of SP from place to place

Abbreviation Implementation

BFM Bellman-Ford-Moore

BFP Bellman-Ford-Moore with Parent--checking

DKQ Dijkstra's Naive Implementation

DKB Dijkstra's Buckets -- Basic Implementation

DKM Dijkstra's Buckets -- Overflow Bag

DKA Dijkstra's Buckets -- Approximate

DKD Dijkstra's Buckets -- Double

DKF Dijkstra's Heap -- Fibonacci

DKH Dijkstra's Heap -- k--array

DKR Dijkstra's Heap -- R--Heap

PAP Graph Growth -- Pape

TQQ Graph Growth with Two Queues -- Pallottino

THR Threshold Algorithm

GR1 Topological Ordering -- Basic

GR2 Topological Ordering -- Distance Updates

All of these algorithms were written in the C programming language. The TQQ algorithm has the most outstanding

performance for one-to-all SP. Because it may be stopped as soon as the destination node is reached, DA has certain advantages

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

4
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

for one-to-one or one-to-several SPs. Two DA variants, DKA and DKB, were implemented. DKA works well for paths less than

1500 meters. More than 1500 DKB is preferable. The implemented algorithms demonstrate this such behavior is beyond

comprehension. If DKB is required for paths less than 1500 meters, the lengths can be ramped up to reach 1500 meters. This

paper makes no such recommendation. DKA has an O(mb+n(b+C/b) worst-case complexity.

Arjun et al. [5] used an efficient data structure to enhance DA. The SP is found via heap sort in this case. The temporal

complexity of heap sort is log(n), where n is the number of nodes to sort. Magzhan and Jani [6] studied and assessed four

strategies for determining SP. The time complexities of the three algorithms are listed in the table below.

Table 2. time complexities of the three algorithms

Algorithm Time complexity

Dijkstra n² + m

Bellman-Ford n³

Floyd-Warshall nm

** n->No. of nodes. m->No. of edges

The time complexity of the fourth algorithm, the genetic algorithm, cannot be estimated because there are many random

processes. However, "Choice" is a deterministic process. Other authors appreciate the complexity of time. Chromosomal

complexity cannot be compared to the other three algorithms shown in the table above because they depend on the size of

the population. SP was established by Betz and Rose [7] for component routing in an FPGA. They created VPR, a tool that can

handle initial component placement and routing in an FPGA. The "Pathfinder Negotiated Congestion Algorithm" is used for

routing. DA determines SP for nets with a small number of nodes in this approach. Then a modified version is used for global

routing. The time complexity is considerably reduced because the approach only works for a small number of nodes per net.

Table 3. Routing tracks decided by various tools

Global R

Detail R.

LocusRoute[17]

CGE[18] SEGA[19]

GBP
[20]

OGC
[21]

IKMB
[22]

VPR

SEGA[23]

TRACER

[24]

VPR

9symml 9 9 9 9 8 7 6 6

alu2 12 10 11 9 9 8 9 8

alu4 15 13 14 12 11 10 11 9

apex7 13 13 11 10 10 10 8 8

example2 18 17 13 12 1 10 10 9

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

5
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

k2 19 16 17 16 15 14 14 12

terml 10 9 10 9 8 8 7 7

too_large 13 11 12 11 10 10 9 8

vda 14 14 13 11 12 12 11 10

Total 123 112 110 99 94 89 85 77

VPR requires minimal tracks for all benchmarked blocks, according to the results. Huang et al. [8] increased DA by permitting

higher spatial complexity. The flowchart of their algorithm is shown in the diagram below.

Figure 2: Flowchart of the developed algorithm [8]

Visual C++ is used to code the simulation. The experiment is conducted on a network of 50X50, 100X100, 200X200, and 250X250

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

6
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

dimensions. The following graphs show the comparisons.

Figure 3: Search time comparison between proposed algorithm and DA [8]

With the proposition, both the number of search spots and the search times are considerably decreased. For more

extensive networks, the improvement is more noticeable. Similarly, Sivakumar and Chandrasekar [9] enhanced the algorithm.

The authors called their method MDSP (Modified Dijkstra's Shortest Path). They compared their approach to Dijkstra's

algorithm using various bucket kinds. Dijkstra's algorithm with Approximate buckets (DKA), Dijkstra's method with Double

buckets (DKD), and Dijkstra's algorithm with Buckets are the algorithms that were compared (DKB). The comparisons are

presented in the following two tables.

Table 4: Searched nodes for various algorithms [9]

Algorithm Nodes

MDSP 16

DKA 25

DKD 32

DKB 35

Table 5: Search time for different algorithms [9].

Algorithm Time (in minuted)

MDSP 2

DKA 4

DKD 6

DKB 10

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

7
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

The suggested method has the quickest execution time, according to the results. With more excellent data storage, Kadry

et al. [10] improved DA in the situation of primarily linked nodes to the active node. In this method, the number of iterations

is lowered. This study does not provide a detailed comparison based on actual data. DA plays a crucial role in reducing data

packet transmission delays in a network. Jain and Kumawat [11] looked at several forms of network delays and computed cost

functions from node to node, which they reduced using DA. The delay caused by nodal processing was not considered in

previous DA applications. The following graph depicts these two comparisons. In series 2, the narrative depicts the application

of DA without taking into account the cost of processing time. The processing delay increases the cost of the plot. The plot in

series 2 shows cost reduction via DA. Processing time is taken into account.

Figure 4: Comparison of cost functions with and without considering delay due to nodal processing [11]

After the calculation of execution time increases, the cost optimization will be improved. To locate the first node, Singal and

Chhillar [12] used the global positioning system “GPS". The SP then uses the DA to locate the destination node. Their

algorithm diagram is shown in the diagram below.

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

8
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Figure 5: Flowchart of the proposed algorithm [12]

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

9
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

This flow is applied for the graph given in the following figure. Following table gives the resultant nodes in every step

Figure 6: Graph considered for the proposed algorithm [12]

Table 6: Resultant nodes in every step [12]

Steps N Position Distance D(B), PATH D(D), PATH D(E), PATH D(F), PATH

1 {A} (2,3) 3,A-B 5,A-C ∞,- ∞,- ∞,-

2 {A,B} (5,7) 3,A-B 4,A-B-C 5,A-B-D 4,A-B-E ∞,-

3 {A,B,C} (8,11) 3,A-B 4,A-C 5,A-B-D 4,A-B-E ∞,-

4 {A,B,C,D} (11,15) 3,A-B 4,A-C 5,A-B-D 4,A-B-E 7,A-B-E-F

5 {A,B,C,D,E} (14,19) 3,A-B 4,A-C 5,A-B-D 4,A-B-E 7,A-B-E-F

6 {A,B,C,D,E,F} (17,23) 3,A-B 4,A-C 5,A-B-D 4,A-B-E 7,A-B-E-F

Sniedovich [13] proposed a relationship between DP(dynamic programming) and DA. Management science and

operations research will pay more attention to this. Orlin et al. [14] propose an efficient approach to graph specialization.

When there are only a few distinct edges, the algorithm works fine. When there are n vertices, m edges, and K unique edge

lengths, the time complexity is O(m) if nK2m and O(mlog(nK/m) otherwise.

2. Dijkstra’s Shortest Route Algo

The shortest path Algorithms are frequently used to solve the quickest or fastest path from a single source. In graph G (V, E),

multiple types of data structures are utilized to determine the path between two vertices; the running time to determine the

route in between pair of vertices varies. Few of the data structures can increase the Time. This project replaces Dijkstra's

method that uses the binary heap.

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

10
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Dijkstra Algo: -
Loop node in Graph:

distance[node]=infinite

parent[node] =null.

End

distance[s] = 0;
//Initial Point

h = {s};
//Pushing int to Heap

While heap is not Empty, and value not Found:

Node = Extract the Minimum value form heap

Label node as visited.

loop each nodev adjacent to u:

if distance[v] is greater than distance[node]+
weight[node,v]+distance[nodev]=distance[node] +
 weight[node, nodev];

parent[nodev] = node.

Decrement the value [node, H]

Time:

It takes o seconds to run in the first loop (V). The minimum removal of the heap in each iteration of the loop is logV.

The inner loop goes to the neighboring nodes of each current node, taking O seconds in total (E). As a result, the algo's temporal

complexity is o ((v + e) *log(v) =o (e* log(v)). The algo's accuracy is thoroughly demonstrated.
The no. of nodes in a network grows, so does the time it takes for the applicable algo to run. A city's road network often
contains more than 104 nodes. It becomes more desirable to have a quick shortest route algo.

2.2 Restricted Search Algo

The organization of road networks is, in general, quite essential. They are a sparse, linked graph with a big scale. When the

Dijkstra method is employed to determine the shortest route, it begins & extends out in a circle until the radius reaches the

destination. Most searches are ineffective in a region opposite to the direction of travel. M. Fu et al. [4] proposed a strategy

for finding the shortest route for a vehicular navigation system that involves physically closing off areas where the shortest

route is not expected to occur. This project uses the algo to achieve this goal. Restricted Search Algo:

Restricted method explains the less area of the left segment of the rectangle Rectangle2, which is cut by two bold lines

rather than the entire circle. Rectangle1 is a rectangle along the diagonal of S and D, and Rectangle2 is a rectangle scaled from

Rectangle1 to the threshold thresh2. With a distance of t1, two straight, bold lines are parallel to the straight line of SD. thresh1

and thresh2 are two factors that must be determined for the best route to be included in the restricting area that usually ranges

between 500 to 1500m

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

11
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Following algo is used reach the goal

Searching Algorithm:

loop each node Graph:

distance[node]=infinite
parent[node] =NULL.

End loop
distance[s] = 0.
 H = {s};
While heap is Not Empty(H) and Value is Not Found:

u = Extract Minimum element from (H);

label u as visited;

loop each v adjacent to u:

If u is out Of Range(v),

 then continue;

if distance[v] > distance[u] + weight[u, v],

then

distance[v] = distance[u] + weight [u, v];

parent[v] = u;

Decrease the Key[v, H];

Steps if out Of Range

Draw a straight line from the right of the vertex.

count = 0;

loop each edge of area

if intersect with edge

//Increment count by 1;
count++;

if count%2== 0

(Is even)
return1;//true returns

 Else
return 0; //false returns

Dijkstra's algo is implemented in the same way. In each loop, instead of resting all neighboring nodes, the method

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

12
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

finds out nodes outside the bounding region by analyzing whether they are out of bounds. The inspection technique counts

the number of intersections between the restricted area & the horizontal line running from the node to the right. This strategy

shows, if the number of meetings is odd, then the node is within this region; Otherwise, it is not so.

Time:

K1, K2: these are the sole reason for the threshold.
So, the ratio R can be used to improve the productivity,
 R = v/V*= c* Optimal / c*
<= 2 * T1 (R + T2 * √2) / πR²
= 2 * K1*R (R + K2* R*√2) / πR² =2 * K1(1 + √2 * K2) / π
Since K1 & K2 are small numbers, great improvement can be achieved. For instance, if K2 = 0.4, P ≈ K1.

Correctness:

Two problems exist in this approach.

1. Threshold may not get the solution properly. As distance increases from the start point to the destination, the shortest

route more likely spreads wider from the straight line of SD.

2. Distinct city traffic lines exist, each with different driving speeds—the highway takes you beyond restriction & is also

the shortest.

This project uses relative thresholds rather than set ones, referred to as factor K1, K2 (threshold / SD length), to obtain a

better result. To make the problem easier to understand, they have the same value implementation. The threshold will increase

proportionally with distance from the start point to the destination in each factor. The second issue could be overcome by

assigning each node a logical position rather than a physical location. When a node is investigated, its logical place is calculated

by multiplying its parent's logical area by the cost of the edge between them. The cost of an edge is the logical distance, which

is measured in terms of physical distance & route type.

The logical location of the start point is the same as its physical location. All nodes being examined use their logical position

to decide if they are within the restricted area. This ensures that the nodes on different roads can be treated equally in

searching. This algo uses the Dijkstra within the restricted area. The shortest route in this area will be found in the existing

route. However, this shortest route may not be the shortest one in the whole area. Thus, it is an optimal route with a restricted

area.

2.3 A* Search

A heuristic is consolidated into the A* calculation's pursuit technique. Rather than picking the following hub with the most

minimal expense (as evaluated from the beginning hub), the cost from the beginning hub is joined with a gauge of closeness

to the objective (a heuristic gauge). This answer for tackling the ideal way of revelation was portrayed by F. Engineer [2]. This

task utilizes Euclidean distance as assessed distance to the objective. In the looking, the expense of a hub V could be determined

as:

f(V)= distance from to V + estimate of the distance to D. = d(V)+ h (V, D)
= d(V)+ sqrt((x(V)– x(D)) ² + (y(V) – y(D)) ²)

where x(V), y(D) and x(V), y(D)are the coordinates for node V and the destination node D.

 A* Search algo->

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

13
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

 for each i G:

v[i]=infinite.
//Initialization

par[i] =NULL.
//initializing parent null

End

v[i] = 0; F(v)= 0; h = {i};
//Heap is initialized

while Not Empty(H) and value Not Found: u = Extract minimum element from the heap (h).

mark i as visited,

loop each v dja to u:

if x[v] > x[u] + weight [u, v],

x[v] =x[u] + weight [u, v];

 parent[v] = u;

F(v) = x[v] + h (v, D);
Decrement the Value[v,h]

Time: Approach improves avg time rather than worst-case Time. The shortest route search begins at the starting location &

continues until it reaches the node that leads to the destination. As a result, the method takes substantially less time to run

than Dijkstra's.

Correctness: This method adopts a strategy like Dijkstra's, but it adds Euclidean distance & the cumulative edge cost between

the current & destination nodes. This value is used to determine the location of the node in the minimum heap. The one with

the lowest value will be chosen & discarded from the heap. This value solely impacts the searching order in the implementation.

It does not change the edge weights or the total distance. When a node relaxes, the accumulated distance is updated in the

same way as Dijkstra. This method is identical to Dijkstra's & is valid.

3. Implementation

The JavaScript programming language was used to create this software. The three strategies were put to use and visually

demonstrated. A graph data file containing partial transportation data for Ottawa is used in the road network example.

3.1 Brief Description

In the diagram, there are four types of roads: small roads, regional roads, major roads, & highways. The maximum driving

speed varies depending on the kind of road. As a result, the physical distance between the two sites is insufficient to

characterize the journey. Instead, the physical distance & the shortest route are represented by a logical distance. By

multiplying the actual distance by the road section, the logical distance may be computed.

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

14
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

3.2 Main Feature

It has the following main features:

1. The road network loads & appears in the window. The file “Ottawa city. Gph” contains this map.

2. The user used a mouse to drag & drop between the two nodes' window screens.

3. Windows is able to display the quickest route if someone requests it.

In this graph, there are four types of roads: minor, regional, significant, & highway, depicted in various colors.

3.3 Run program

Figure 7. Screenshot of the Algorithm Implemented

Solved Problem: -

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

15
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Figure 8. Screen Shot of the Solved problem

4. Experimentation

The initial segment looks at the run times & exactness of the three calculations. Distance is the length of the way, addressed

by the consistent distance as examined in segment 3.1. The equivalence of an estimate for a specific distance is the way length

is found by this calculation, isolated by the way length is found by Dijkstra. The A* algo outperforms the Dijkstra algo. Because

it uses the Euclidean heuristic function to limit its search region towards the target, it generally decreases the running time in

half. Because of the same rationale as before, the cutting rate reduces as the distance increases.

5. Analysis

• Dijkstra's algorithm has attracted a lot of attention because it can solve various real-world problems.

• Negative and irrational edge lengths are addressed using more generic methods.

• It appears that DA can be used directly in some situations, such as determining the shortest distance between two

cities connected by roadways. In this instance, DA adjustment is also required. A road may be closed for safety reasons

due to inclement weather. The rest of the road work remains unchanged. DA must be applied to a portion of the

graph.

• The inaugural node may be located using GPS technology.

• For the inclusion of the starting node and the calculation of Euclidean distances, a tweaked method is required.

• For a particular arrangement, improvement may be beneficial. The modifications that may be made to a graph with

too many edges are considerably different from those that can be made to a graph with a small number of edges of

varying lengths.

• A vast network can be fragmented into smaller overcrowded networks. A detailed routing for smaller networks

followed by a global route for the entire network shows to be quite economical for FPGA.

• DA can be used to route data packets in a network. The time spent on data transport from node is shown below. In

place of the distance, the node should be considered. All potential delays should be evaluated and accounted for. Give

the delay or cost function that is effective. It's worth doing at the very least. the problem deserves attention. The

latency of the researcher varies according to the channel and other data packets' location and transmission.

• The algorithms for determining the shortest path are included in the table below. The complexity of available time is

contrasted.

Algorithm

/Inventor’s

Name

Special

Features

Time

Complexity

Source of

Information

Dijkstra’s

Algorithm

Determines the shortest path between any

two nodes in a network.

n2 + m = O(n2) [1, 6].

L. Ford Negative edge length is possible. O(nm) [1]

Gallo and

Pallottino

Irrational edge length can occur. O(2n) [1]

DKA Time complexity decreases as space

complexity increases.

O(mb+n(b+C/b)) [4]

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

16
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Arjun et

al.

For networks with large number of edges. log(n) for heap

sort.

n2 + log(n) in

total.

[5]

Bellman

Ford

Networks with a low node count n3 [6]

Floyd

Warshall

Networks having a limited number of edges nm [6]

Genetic

Algorithm

To be used in large networks.

The chances of obtaining the correct answer

are great.

However, the likelihood is always smaller than

one.

Random processes

cannot be

determined. It can

only be used for the

process of

"Selection."

However, it is

connected to

population size. It

has nothing to do

with network

specifications.

[6]

Pathfinder

Negotiated

Congestion

Algorithm

For comprehensive routing in a crowded

network with a small number of nodes. A

network with a tiny n and a commensurate m.

Not reported [7]

Orlin et al. For a unique network with a limited number of

different edges.

O(m) if nK≤2m

and

O(mlog(nK/m))

otherwise.

[14]

n ->No. of nodes.
m-> No. of edges.
b A chosen constant. Each node can be touched b times at most

6. Conclusion

Many algorithms are compared to Dijkstra's algorithm. If available, time complexities are compared. The given simulation times

are compared. Application-based enhancements are scrutinized. With the development of technology, algorithms will find

additional uses. The application requires dedicated research and algorithm-based enhancements. Better hardware will improve

time complexity at the expense of space complexity. There will be additional storage capacity. Using the Euclidean heuristic

function, the A* algo can achieve a faster running time, even though its theoretical Time is like Dijkstra's. It can also ensure

that the shortest route is found. The limited method can discover the best route in linear time, but the confined area must be

appropriately chosen. The choice is made based on the graph itself; the faster the search, the smaller the search zone, but at

R. Srivastava, P. Singh

ISSN (Online): 2582-7006

17
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

the cost of not finding the shortest or no route. If the first search fails, this strategy, by increasing the factor, may allow a

second search.

Reference

[1]. D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, "A survey on algorithmic approaches for solving tourist trip design problems",
Journal of Heuristics, vol. 20, no. 3, pp. 291-328, 2014.

[2]. C. Chung-Hua, H. Chenyang, "A Platform for Travel Planning by using Google Maps", 16th IEEE Int. Conf. Mobile Data Management, vol.
2, pp. 120-125, Jun. 2015.

[3]. F.B. Zhan, C. Noon, "Shortest Path Algorithms: An Evaluation Using Real Road Networks", Transportation Science, vol. 32, no. 1, pp. 65-
73, November 1996.

[4]. D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, "Mobile recommender systems in tourism", Journal of Network and
Computer Applications, vol. 39, pp. 319-333, 2014.

[5]. C. Chung-Hua and H. Chenyang, "A Platform for Travel Planning by using Google Maps", 16th IEEE Int. Conf. Mobile Data Management,
vol. 2, pp. 120-125, Jun. 2015.

[6]. T. Angskun and J. Angskun, "A travel planning optimization under energy and time constraints", Int. Conf. Information and Multimedia
Technology ICIMT, pp. 131-134, Dec. 2009.

[7]. E. H.-C. Lu, C.-Y. Lin and V. S. Tseng, "Trip-mine: An efficient trip planning approach with travel time constraints", Proc. IEEE 12th Int.
Conf. Mobile Data Management ser. MDM '11, vol. 1, pp. 152-161, 2011.

[8]. W. C. Chia, L. S. Yeong, F. J. Xian Lee and S. I. Ch'ng, "Trip planning route optimization with operating hour and duration of stay
constraints," 2016 11th International Conference on Computer Science & Education (ICCSE), 2016, pp. 395-400, doi:
10.1109/ICCSE.2016.7581613.

[9]. A.V. Goldberg, “A simple shortest path algorithm with linear average time”, in: ESA, 2001, pp. 230–241.
[10]. J. B. Orlin, K. Madduri, K. Subramani, and M. Williamson, “A faster algorithm for the single source shortest path problem with few

distinct positive lengths,” J. Discrete Algorithms (Amst.), vol. 8, no. 2, pp. 189–198, 2010.
[11]. W. A. K. D. Wijesinghe, A. G. L. D. P. Amarasinghe, T. M. U. A. Bandara, Aruna Ishara Gamage, Devanshi Ganegoda, "VOYAGER – Smart

Travel Guidance Cross Platform Mobile Application", 2021 3rd International Conference on Advancements in Computing (ICAC), pp.163-
168, 2021.

[12]. Sumit S. Muddalkar, Nishant S. Chaturkar, Khushal D. Ingole, Shreyash B. Wadaskar, Rahul B. Lanjewar, "Electric Vehicle Charging
Station Finding App", International Journal of Advanced Research in Science, Communication and Technology, pp.607, 2022.

[13]. Larisa Kuznetsova, Arthur Zhigalov, Natalia Yanishevskaya, Denis Parfenov, Irina Bolodurina, "Application of a Modified Ant Colony
Imitation Algorithm for the Traveling Salesman Problem with Time Windows When Designing an Intelligent Assistant", Advances in
Intelligent Systems, Computer Science and Digital Economics, vol.1127, pp.346, 2020.

[14]. Patrick Kaltenrieder, Jorge Parra, Thomas Krebs, Noémie Zurlinden, Edy Portmann, Thomas Myrach, Designing Cognitive Cities, vol.176,
pp.235, 2019.

[15]. Baivab Maulik, Aditi P Nayak, Sanjana U, Simmi Alok, Divyaprabha K N, "Design and Implementation of Virtual Tour Guide App", 2022
International Conference on Advanced Computing Technologies and Applications (ICACTA), pp.1-6, 2022.

