
 Journal of Informatics
 Electrical and Electronics Engineering, 2024,
 Vol. 05, Iss. 01, S. No. 107, pp. 1-9
 ISSN (Online): 2582-7006

ISSN (Online) : 2582-7006

1
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

Sorting Visualizer: A Visual Journey
Through Sorting Algorithms

Shreya Singh1, Shikha Singh2, Vineet Singh3, Bramah Hazela4

1,2,3,4Amity School of Engineering and Technology, Amity University, Uttar Pradesh, Lucknow, India
1shreya.singh16oct@gmail.com, 2ssingh8@lko.amity.edu, 3vsingh@lko.amity.edu, 4bhazela@lko.amity.edu

How to cite this paper: S. Singh, S.
Singh, V. Singh, B. Hazela, “Sorting
Visualizer: A Visual Journey Through
Sorting Algorithms,” Journal of In-
formatics Electrical and Electronics
Engineering (JIEEE), Vol. 05, Iss. 01,
S No. 107, pp. 1–9, 2024.

https://doi.org/10.54060/a2zjourna
ls.jieee.107

Received: 05/12/2023
Accepted: 10/03/2024
Online First: 25/04/2024
Published: 25/04/2024

Copyright © 2024 The Author(s).
This work is licensed under the
Creative Commons Attribution
International License (CC BY 4.0).
http://creativecommons.org/licens
es/by/4.0/

 Abstract

This paper, which is based on the importance of sorting algorithms, will carefully
compare the features of various algorithms, beginning with their work effectiveness,
algorithm execution, introductory concepts, sorting styles, and other aspects, and
make conclusions in order to create more effective sorting algorithms. Searching tech-
niques and sorting algorithms are not the same. Sorting is placing the provided list in a
predetermined order, which can be either ascending or descending, whereas searching
is predicated on the possibility of finding a specific item in the list. Only a section of the
data is sorted, and the piece of data that's actually used to establish the sorted order
is the key. The maturity of this data is being compared. Depending on the kind of data
structure, there are several algorithms for doing the same set of duties and other con-
ditioning, and each has pros and cons of its own. Numerous sorting algorithms have
been analyzed grounded on space and time complexity. The aim of this relative study
is to identify the most effective sorting algorithms or styles. This relative study
grounded on the same analysis allows the user to select the applicable sorting algo-
rithm for the given situation.

Keywords

Sorting, searching, algorithms, data structures, comparisons, performance, complexity

1. Introduction

Based on the advancement of knowledge and technology, individuals typically use computers to compare various impacts,

particularly when organizing difficulties. Examples of such tasks include ranking test results, thoroughly analysing product

recommendations, and categorizing challenges. The utilization of data and information processing causes the sorting prob-

lems to become less and less thick. Sorting is an initial function in data processing. Numerous examples of sorting can be

Open Access

https://doi.org/10.54060/a2zjournals.jieee.107
https://doi.org/10.54060/a2zjournals.jieee.107
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

S. Singh et al.

ISSN (Online) : 2582-7006

2
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

seen in daily life. For example, we can easily locate necessary information in a travel store or shopping promenade because

the information is categorized.[1] Because all the words are provided in sorted form, picking a word at random from a word-

book isn't a laborious operation. Additionally, one may find a phone number, name, or address in a phone book quite easily

because to the advantages of sorting. Sorting is considered one of the most crucial procedures in computer knowledge due

to its essential functions. Other examples of sorting include priority scheduling and shortest job first scheduling.[2] There are

many different ways that the details need to be sorted: they can be randomly arranged as a whole, previously sorted, in-

credibly little or very large in quantity, sorted in reverse order, etc. [3] A method that works for sorting every kind of data is

not available. Meanwhile, sorting the data typically takes a minimum of 35% of the time when a computer tackles a given

problem. In relation to this issue, the most efficient method for refining the computer's operational efficiency would be to

research sorting algorithms and, based on the analysis, select the most appropriate sorting algorithm for the given circum-

stance.

 In this paper we're going to compare six (Bubble, Quick, Insertion, Selection, Merge and Heap) sorting algorithms for

their performance on a given input in best, worst and average cases. This tool, known as SV (Sorting Visualizer), aims to help

scholars who are generally visual learners and who comprehend material better when presented visually.[4] As a result,

we've created a web application that helps us understand the sorting algorithmic process better by visualizing it. Our primary

motive was to make the vitality web grounded so that it could be used by a large number of people across numerous plat-

forms without taking the installation of fresh software or operations. Because Sorting Visualizer is an online tool, it may be

used by a large number of individuals from anywhere in the world without requiring the download of any unnecessary fea-

tures, which can be beneficial for everyone, but especially for students. Humans naturally prefer to communicate thoughts

visually, and images have a significant impact on the way that information is processed. Early cave drawings demonstrate a

prehistoric desire to utilize images to try and communicate ideas and meaning.[5] Even today, majority of kids try to make

meaningful visualizations by sketching simple pictures that depict their thoughts. In an effort to identify visual patterns, sort-

ing visualizer was developed to showcase visual representations of sorting algorithms. It was discovered that each algo-

rithm's visual footprint is distinct from the others, which makes it easier for those unfamiliar with the idea of sorting to com-

prehend these algorithms and how they operate/work.

 The process of developing the visualizer and drawing important conclusions are covered in detail in the paper. After the

introduction, the following sections would discuss the project: the Literature Survey would provide a contextual background

and briefly reference all the related works in the field that helped me with the project. Methodology would describe the de-

velopment process; Algorithm Analysis would delve into theoretical and practical aspects of the algorithms used; Results and

Discussion would present empirical findings; and finally, Conclusion and Future scope would summarize key insights from the

paper and give a glimpse of potential future work that could be done in the field.

2. Literature Survey

The paper analyses and compares different sorting algorithms based on their time and space complexity. It describes popular

sorting algorithms like bubble sort, insertion sort, selection sort, merge sort, quicksort, heap sort, radix sort, and bucket sort.

It explains how the time complexity of these algorithms can be analyzed using Big O notation. It also discusses factors like

average-case and worst-case time complexity, and space complexity. Real-world applications of sorting algorithms are men-

tioned in areas like databases, e-commerce, search engines, data analysis etc. The document concludes that no single sorting

algorithm is best and the most appropriate one needs to be selected based on the characteristics of the input data.[6]

 The paper proposes a new quadratic sorting algorithm and compares its performance to existing quadratic sorting algo-

rithms like insertion sort, bubble sort, selection sort, quicksort, etc. It demonstrates that the new algorithm exploits the idea

 S. Singh et al.

ISSN (Online) : 2582-7006

3
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

that an unsorted data sequence can be viewed as a set of disjoint sorted sequences. The algorithm works by building a rela-

tion be-tween data elements in each iteration and sorting the elements accordingly. Graphical comparisons show that the

algorithm often has better time complexity and execution time compared to other quadratic algorithms, especially on large

datasets.[7]

 The document discusses various sorting algorithms and proposes a new sorting algorithm called MinFinder. It describes

properties of sorting algorithms, types of sorting algorithms, and complexity analyses. MinFinder finds the smallest element

and places it in the first position of the array by shifting other elements to the right. It repeats this process to sort all ele-

ments. The document analyses time and space complexity, loop invariant, and performance comparisons of MinFinder with

other algorithms.[8]

 The document describes an approach called Alpha Dev that uses deep reinforcement learning to discover new and op-

timized algorithm implementations directly from assembly code. AlphaDev models the problem as a game called Assembly

Game where the goal is to generate a correct and efficient algorithm by appending assembly instructions. It represents algo-

rithms, inputs/outputs and machine state to learn policies and value functions to guide the search. AlphaDev is able to dis-

cover new sorting algorithms that improve on human benchmarks in terms of length and latency. This includes discovering

new swap/copy moves that reduce instructions. It also finds improved variable sorting routines. The approach generalizes to

other domains like protocol buffer decoding. Comparisons show AlphaDev explores more than stochastic search baselines

and is able to escape local optima.[9]

 This paper performs a comparative study of five sorting algorithms: Bubble Sort, Quick Sort, Selection Sort, Insertion

Sort, and Merge Sort. It develops a program in C# to calculate the CPU time taken by each algorithm on different input sizes

(1-150, 1-300, 1-950) in best, worst, and average cases. The results are presented in tabular and graphical form. Based on the

experiments, the paper ranks the performance of the algorithms on the given data sets and input sizes.[10]

 This article discusses efficient algorithms for sorting and searching strings or integers of length w (the word size of the

RAM) beyond what is possible with comparison-based algorithms. It presents some simple algorithms using tries and packing

keys tightly that allow sorting in O(n log log n) time and searching in O(log^c n) time, though they use super linear space. It

also covers data structures like fusion trees that support sorting and searching in O(n log n/log log n) and O(log n log log n)

worst-case time respectively using only linear space.[11]

 This paper compares the performance of three sorting algorithms: selection sort, bubble sort, and gnome sort. It ex-

plains each algorithm, provides pseudocode examples, and analyses their time complexities. The paper implements the three

algorithms in C# and measures their execution times on random unsorted and sorted data sets of varying sizes. The results

show that gnome sort performs best on pre-sorted data, while selection sort is fastest for unsorted data.[12]

 This document provides a comparative study of various sorting and searching algorithms. It discusses common sorting

algorithms like quicksort, selection sort, bubble sort, insertion sort, merge sort and heapsort. It also covers searching algo-

rithms like linear search and binary search. For each algorithm, it explains the steps, provides examples, and discusses the

advantages and disadvantages. The document analyses the time and space complexity of these algorithms and concludes

that different algorithms are suitable depending on the size of input data and requirements.[13]

 This paper presents a general framework for analyzing the average-case complexity of sorting and searching algorithms

when operating on data produced by a probabilistic source. It describes the algorithms in terms of the expected number of

comparisons between elements, relating this to properties of the source like entropy. Asymptotic estimates for the average

number of comparisons are obtained by expressing this expectation as a Dirichlet series and using properties like tameness

of the source. The framework is applied to algorithms like quicksort, selection sort, insertion sort and bubble sort.[14]

 This document discusses various algorithms for sorting and implementing dictionaries (data structures that support

search, insert and delete operations). It begins with an introduction to basic data structures like arrays and linked lists. It then

S. Singh et al.

ISSN (Online) : 2582-7006

4
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

covers sorting algorithms like insertion sort, shell sort, quicksort and compares their performance. The next section discusses

implementations of dictionaries using hash tables, binary search trees, red-black trees, skip lists and compares their perfor-

mance and trade-offs. The last section covers algorithms for sorting and implementing dictionaries for very large files that

don't fit in memory, specifically external sorting and B-trees. Code examples are provided in C for many of the algo-

rithms.[15]

3. Proposed System and Methodology

Here, we describe our general framework, or overview of the process we will be following through, in making of the tool.

3.1. Proposed System

The web application is written in HTML5, CSS3 and JavaScript. The physical components of the online application are coded in

HTML5. CSS has complete control over the interactive layout, or appearance, of the online application. The remaining duties

are completed by JavaScript, which is used for the algorithm design, bar movement and depiction. Many features of the

recommended system increase user productivity when utilizing this web application. The user interface consists of six sorting

method buttons, a new random array button, and adjustments to the array's size and speed. All of these components are

located atop a bar graph that illustrates the entire process. The user clicks on any sorting button he/she wishes to imple-

ment, and the bars rearrange themselves according to the speed set and ultimately fall in their respective sorted positions.

The basic process flow is shown in Figure 1.

Figure 1. Process Flow

3.2. Methodology

1. Project Analysis:

The Sorting Visualizer is an interactive web-based application which has to be designed to facilitate the understanding

and visualization of various sorting algorithms. Employing a client-server architecture, the frontend would leverage

HTML, CSS, and JavaScript for user interface rendering and interaction, while the backend utilizes JavaScript to imple-

ment the sorting algorithms.

2. HTML Structure:

The HTML structure forms the backbone of the visualizer's user interface. The document is divided into sections, includ-

ing a container for displaying the array, buttons for user interaction, and a set of buttons for selecting sorting algorithms.

The structuring aims to enhance the user experience, ensuring clarity and simplicity in the presentation of sorting algo-

rithm visualizations.

3. CSS Styling:

A meticulous approach to styling ensures an aesthetically pleasing and coherent user interface. The CSS file defines rules

 S. Singh et al.

ISSN (Online) : 2582-7006

5
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

for various HTML elements, specifying layout properties, colour schemes, and animations. Emphasis is placed on creating

a visually engaging representation of the array and user interface components, promoting a seamless user experience

during sorting visualizations.

4. JavaScript Logic:

The JavaScript logic is pivotal in orchestrating the functionality of the visualizer. Key functions include generating a ran-

domized array, initiating the sorting process based on user input, and implementing individual sorting algorithms. Each

algorithm adheres to a modular structure, allowing for easy integration and maintenance. Real-time visualization is

achieved through timed updates to the HTML DOM, ensuring users witness the step-by-step progression of the sorting

algorithm.

5. Array Generation:

The array generation process involves a randomized approach to populate the array with integers. This function plays a

crucial role in providing diverse datasets for sorting visualizations, contributing to a more comprehensive understanding

of algorithmic behaviour under various input conditions.

6. Sorting Algorithms:

The visualizer supports multiple sorting algorithms, with each algorithm encapsulated in its JavaScript function. The algo-

rithms, such as bubble sort, employ visualization techniques to depict the sorting process. Careful consideration is given

to the efficiency and clarity of visualization, aiming to enhance the educational value of the tool.

7. User Interaction:

User interaction is a focal point of the visualizer, allowing users to generate new arrays, choose sorting algorithms, and

initiate the visualization process. The seamless integration of HTML, CSS, and JavaScript ensures an intuitive and respon-

sive user interface, promoting engagement and facilitating a deeper understanding of sorting algorithms.

8. Testing:

The visualizer undergoes rigorous testing to ensure its reliability and effectiveness. User testing involves generating ar-

rays, selecting different algorithms, and scrutinizing the visual representation to verify the accuracy of the sorting pro-

cess. This phase also addresses potential edge cases and performance considerations.

9. Extensibility:

Designed with extensibility in mind, the visualizer can be expanded by incorporating additional sorting algorithms, refin-

ing the user interface, or introducing new features. The modular structure of the JavaScript code facilitates seamless in-

tegration of new functionalities, promoting ongoing development and adaptability.

10. Styling and Enhancements:

Continuous improvement is pursued through ongoing styling refinements and feature enhancements. User feedback is

valuable in identifying areas for improvement, and periodic updates are released to address usability concerns, optimize

performance, and enhance the overall visual appeal of the sorting visualizer.

11. Deployment:

Upon successful completion of development and testing, the visualizer is deployed to a web server or hosting platform,

making it accessible to a broader audience. This stage involves considerations of server-side technologies, scalability, and

user accessibility, ensuring a reliable and efficient deployment of the sorting visualizer.

4. Algorithm Analysis

Here, we will analyse the results and draw out key conclusions on the basis of sorting procedures followed.

4.1. Performance Analysis

S. Singh et al.

ISSN (Online) : 2582-7006

6
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

The aim of this section is to provide a thorough evaluation of sorting algorithms' performance. It includes:

Time complexity Analysis of sorting algorithms

Time complexity analysis measures how long an algorithm takes to execute when input volume increases. When using sorting

algorithms, the input size is the total number of elements that need to be sorted. The temporal complexity of sorting algo-

rithms can be understood using big O notation. The temporal complexity of some common sorting algorithms is listed here.

➢ Selection Sort: O(n2)

➢ Bubble Sort: O(n2)

➢ Insertion Sort: O(n2)

➢ Merge Sort: O(n log n)

➢ Quick Sort: O(n log n) average case, O(n2) worst case

➢ Heap Sort: O(n log n)

Space Complexity Analysis of sorting algorithms

Space complexity analysis is a way to quantify how much memory a program requires as the size of the input grows. The de-

gree of sophistication in sorting algorithms' use of memory depends on whether they sort in-place or require additional

memory for temporary storage. The space complexity of a few common sorting algorithms is listed here.

➢ Selection Sort: O(1)

➢ Bubble Sort: O(1)

➢ Insertion Sort: O(1)

➢ Merge Sort: O(n)

➢ Quick Sort: O(log n) average case, O(n) worst case

➢ Heap Sort: O(1)

4.2. Efficiency Analysis

The effectiveness of sorting algorithms can be assessed; this is commonly measured in terms of space and time complexity.

While space complexity refers to the amount of memory an algorithm consumes to sort the items, time complexity is the

amount of time an algorithm takes to sort a list or array of objects. A "big-O" notation, which represents the upper bound for

an algorithm's worst-case scenario, is typically used to indicate time complexity The best-case, average-case, and worst-case

scenarios for the sorting algorithms that we examined for our report are arranged in TABLE 1.

Table 1. Time complexity analysis of different sorting algorithms

Sorting Algorithm Best Case Average Case Worst Case

Insertion O(n) O(n2) O(n2)

Selection O(n2) O(n2) O(n2)

Bubble O(n2) O(n2) O(n2)

Heap O(n log n) O(n log n) O(n log n)

Merge O(n log n) O(n log n) O(n log n)

Quick O(n log n) O(n log n) O(n2)

In general, the efficiency of sorting algorithms can be evaluated by comparing their time and space complexity and evaluating

 S. Singh et al.

ISSN (Online) : 2582-7006

7
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

how well they perform when dealing with various types of input data. To guarantee the optimum performance, it is essential

to consider the specific needs of the application as well as the characteristics of the input data while choosing a sorting algo-

rithm.

5. Results and Discussion

In The main goal was to keep the web page and user interface as simple as possible so that it’s easy for the user to navigate

through the page. All the similar elements are coupled together. In this system the user interface build is professional. It is

the front end of the project or it can also be termed as user interface. Here the user the gets the multiple options to execute

or access their task as per need. The user interface has multiple components: The main navbar allows the user to set the size

of the array and to control the speed of visualization, the buttons to generate a new random array, and the sorting algorithm

buttons. Figure 2 below depicts the bars that display the state after the visualization process completes upon selection of

algorithm.

Figure 2. Bars after sorting

There are several benefits and drawbacks to each sorting method. The right algorithm can significantly boost efficiency and

performance. The next is memory management. Since sorting algorithms require a lot of memory, memory management is

essential to getting the greatest speed possible. Sometimes, sorting algorithms can reduce the amount of storage they use.

Algorithms with the ability to alter the data they are given have the potential to function considerably better. An adaptive

algorithm may switch to a different sorting algorithm based on the volume of the incoming data. Using parallel processing

techniques can enhance sorting algorithms.

How to select the best sorting algorithm?

The effectiveness of sorting algorithms can be assessed; this is commonly measured in terms of space and time complexity. A

few general observations can be made with the help of Table 2 below.

Table 2. Selection of sorting algorithms based on different scenarios

SCENARIO APPROPRIATE SORTING ALGORITHM

When input dataset is small Insertion sort

When input dataset is large Heap sort, Merge sort, or Quick sort

When the data is almost sorted Insertion sort

S. Singh et al.

ISSN (Online) : 2582-7006

8
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

When the data is random Quick sort, Merge sort, or Heap sort

When memory usage is an important consideration Heap sort [O(1) extra space] or Quick sort [O(log n) extra space]

When linked lists have to be sorted Merge sort

When in a parallel computing environment Merge sort

When stability is a concern Merge sort

6. Conclusion and Future Scope

Sorting algorithms are ultimately fundamental computer science methods with a wide range of real-world applications. They

are used in many different industries and applications where large volumes of data need to be quickly and efficiently

pro-cessed, categorized, and analysed. This work has addressed the several types of sorting algorithms, their space and time

complexity, and their practical applications. We also examined the efficiency of sorting algorithms and discussed how

com-plexity in space and time might be used to quantify it. Different sorting algorithms have different levels of efficacy,

therefore it's important to choose the one that best suits the requirements of the assignment.

 We also discussed performance analysis and compared the efficiency of several sorting algorithms based on a variety of

cri-teria, such as stability, time complexity, and space complexity. The analysis showed that different sorting algorithms re-

spond differently depending on the situation and that choosing the right algorithm might have a significant impact on per-

formance. By understanding the various sorting algorithms, their efficacy, and optimization tactics, we can choose the opti-

mal algorithm for the job and improve both the efficiency and performance of our apps. As technology and data collecting

grow, sorting algorithms will remain an essential tool for organizing and analysing data.

Critical Ideas to think!

➢ How can we utilize the insertion sort's fast running time while its input is almost sorted to boost the quicksort's run-

ning time?

➢ Is it possible to stabilize the heap sort or rapid sort algorithms?

➢ What is the iterative method for implementing quicksort and merge sort?

➢ Here are some more sorting algorithms to investigate: Tournament, Tree, Tim, and Shell sorts.

References

[1]. N. Akhter, "Sorting Algorithms – A Comparative Study," International Journal of Computer Science and Information
Security (IJCSIS), vol. 14, no. 12, pp. 930-936, (Published: December 2016)

[2]. G. Kocher and N. Agrawal, "Analysis and Review of Sorting Algorithms," International Journal of Scientific Engineering
and Research (IJSER), vol. 2, no. 3, pp. 81-84.

[3]. C. L. Liu, "Analysis of sorting algorithms," AFIPS '73: National computer conference and exposition, 1973.

[4]. W. Xiang, "Analysis of the time complexity of quick sort algorithm," International Conference on Information
Management, Innovation Management and Industrial Engineering, pp. 408-410, 2011.

[5]. J. Lobo and S. Kuwelkar, "Performance analysis of merge sort algorithms," Proceedings of the International Conference
on Electronics and Sustainable Communication Systems (ICESC 2020), pp. 110-115, 2020

[6]. A. Aishwarya and R. Tiwari, “AN ANALYSIS OF SORTING ALGORITHMS”,” International Research Journal of
Modernization in Engineering Technology and Science, 2023.

[7]. A. Zutshi and D. Goswami, “Systematic review and exploration of new avenues for sorting algorithm”,” International
Journal of Information Management Data Insights, 2021.

[8]. S. Md, M. A. Rana, H. Hossin, and M. Jahan, “A New Approach in Sorting Algorithm”,” in 8th International Congress of
Information and Communication Technology, (Published: 2019)

 S. Singh et al.

ISSN (Online) : 2582-7006

9
Journal of Informatics Electrical and Electronics

Engineering (JIEEE)
A2Z Journals

[9]. D. J. Mankowitz et al., “Faster sorting algorithms discovered using deep reinforcement learning,” Nature, vol. 618, no.
7964, pp. 257–263, 2023.

[10]. M. Idrees, “Sorting Algorithms - A Comparative Study,” International Journal of Computer Science and Information
Security, 2016.

[11]. A. Andersson, Sorting and Searching Revisited”. Sweden (Published, 2005.

[12]. J. Hammad, A Comparative Study between Various Sorting Algorithms”. Al-Quds Open University, 2015.

[13]. Ms ROOPA, Ms RESHMA J, “A Comparative Study of Sorting and Searching Algorithms”, International Research Journal
of Engineering and Technology (IRJET), Vol. 05, Issue 01, 2018.

[14]. J. Clément, T. Hien Nguyen Thi, and B. Vallée, “A general framework for the realistic analysis of sorting and searching
algorithms,” in 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), Kiel, Germany,
2013.

[15]. T. Niemann, “Sorting and Searching Algorithms: A Cookbook”, July 2006.

